于树澄
教师姓名:于树澄
电子邮箱:
学历:博士研究生毕业
办公地点:图书馆VIP东校区地空楼518室
联系方式:yusc@ustc.tsg211.com
学位:博士
职称:特任研究员
毕业院校:波士顿学院
所属院系:数学科学学院
学科:
其他联系方式
暂无内容
论文成果
- 13. (with G. Hammarhjelm and A. Strömbergsson) Asymptotic estimates of large gaps between directions in certain planar quasicrystals, preprint (2024).
- 12.(with D. Kelmer) Second moment of the light-cone Siegel transform and applications, Adv. Math. 432 (2023), Paper No. 109270, 70 pp.
- 11.(with D. Kelmer) Fourier expansion of light-cone Eisenstein series, J. Lond. Math. Soc. (2) 108 (2023), no.6, 2175-2247.
- 10.(with A. Ghosh and D. Kelmer) Effective density for inhomogeneous quadratic forms II: fixed forms and generic shifts, Int. Math. Res. Not. IMRN 2023, no. 22, 19507-19545.
- 9.(with D. Kleinbock and A. Strömbergsson) A measure estimate in geometry of numbers and improvements to Dirichlet's theorem, Proc. Lond. Math. Soc. (3) 125 (2022), no. 5, 778-824.
- 8. (with A. Ghosh and D. Kelmer) Effective density for inhomogeneous quadratic forms I: generic forms and fixed shifts, Int. Math. Res. Not. IMRN 2022, no. 6, 4682–4719.
- 7. (with C. Burrin and U. Shapira) Translates of rational points along expanding closed horocycles on the modular surface, Math. Ann. 382 (2022), no. 1-2, 655–717.
- 6. (with M. Alam and A. Ghosh) Quantitative Diophantine approximation with congruence conditions, J. Théor. Nombres Bordeaux 33 (2021) no. 1, pp. 261-271.
- 5. (with D. Kelmer) The second moment of the Siegel transform in the space of symplectic lattices, Int. Math. Res. Not. IMRN 2021, no. 8, 5825-5859.
- 4. (with D. Kelmer) Values of random polynomials in shrinking targets, Trans. Amer. Math. Soc. 373 (2020), 8677-8695.
- 3. (with D. Kleinbock) A dynamical Borel-Cantelli lemma via improvements to Dirichlet's theorem, Mosc. J. Comb. Number Theory, 9 (2020), 101–122.
- 2. (with D. Kelmer) Shrinking targets problems for flows on homogeneous spaces, Trans. Amer. Math. Soc. 372 (2019), no.9, 6283-6314.
- 1. Logarithm laws for unipotent flows on hyperbolic manifolds, J. Mod. Dyn., 11 (2017) 447-476.
|