夏长荣  (教授)

博士生导师 硕士生导师

电子邮箱:

联系方式:0551-63607475

学位:博士

学科:材料科学与工程

当前位置: 中文主页 >> 科学研究

    2024

    [1]Chen, Yin; Zhao, Yongtao; Zhang, Shaowei; Zhang, Binze; Su, Mingchao; Wang, Deliang, Xia, Changrong. Supersonic spray derived Cu–Co oxide coating on SUS441 to protect the metallic interconnect and to increase stability of SOFC cathode[J]. International journal of hydrogen energy, 2024, 50: 1273-1281.

    [2]Zhang, Lu; Hu, Xueyu; Huan, Daoming; Shi, Nai; Dong, Dehua; Xia, Changrong. Functionally Graded Infiltration Triggering Ultrahigh Electrolytic Current in Robust Reversible Solid Oxide Cells[J]. Small Structures, 2024, 5(4): 2300447.

    [3]Ma, Yumei; Zhang, Lijie; Zhu, Kang; Zhang, Binze; Peng, Ranran; Xia, Changrong; Huang, Ling. In3+-doped Sr2Fe1.5Mo0.5O6δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell[J]. Nano Research, 2024, 17(1): 407-415.

    [4]Zhang, Lijie; Jiang, Yunan; Zhu, Kang; Shi, Nai; Chen, Zhengguo; Peng, Ranran; Xia, Changrong. Fe-Doped SDC Solid Solution as an Electrolyte for Low-to-Intermediate-Temperature Solid Oxide Fuel Cells[J]. ACS Applied Materials & Interfaces, 2024.

    [5]Zhu, Kang; Zhang, Lijie; Shi, Nai; Qiu, Bingbing; Hu, Xueyu; Huan, Daoming; Xia, Changrong; Peng, Ranran, Lu, Yalin. A Superior Catalytic Air Electrode with Temperature-Induced Exsolution toward Protonic Ceramic Cells[J]. ACS nano, 2024, 18(6): 5141–5151.

    [6]Zhang, Lijie; Jiang, Yunan; Zhu, Kang; Shi, Nai; Rehman, Zohaib Ur; Peng, Ranran; Xia, Changrong. Fe‐Doped Ceria‐Based Ceramic Cathode for High‐Efficiency CO2 Electrolysis in Solid Oxide Electrolysis Cell[J]. Small Methods, 2024: 2301686.

    [7]Jiang, Yuyao; Huan, Daoming; Xia, Changrong. A robust tubular solid oxide fuel cell through bifunctional praseodymium oxide nanocatalyst infiltration[J]. Ceramics International, 2024, 50(7): 12489-12497.

    [8]Zhao, Yongtao; Jiang, Yunan; Zhang, Lijie; Chen, Yin; Su, Chang; Zheng, Kai; Huan, Daoming; Xia, Changrong. CuFe2O4 nano-spherical powder directly served as interconnect coating for solid oxide fuel cells applications[J]. Journal of Power Sources, 2024, 599: 234221.

    [9]Chen, Zhengguo; Zhao, Yongtao; Zhang, Binze; Rehman, Zohaib Ur; Zhang, Lijie; Jiang, Yunan; Xia, Changrong. Ni–Co spinel based oxide as new type of additive to glass seal for solid oxide fuel cells[J]. International journal of hydrogen energy, 2024, 68: 1261-1270.


    2023

    [1]Zhang, Binze; Zhang, Shaowei; Zhang, Zhen; Tang, Kaibin, Xia, Changrong. Metal-supported solid oxide electrolysis cell for direct CO2 electrolysis using stainless steel based cathode[J]. Journal of Power Sources, 2023, 556: 232467.

    [2]Zhang, Binze; Zhang, Shaowei; Han, Hairui; Tang, Kaibin, Xia, Changrong. Cobalt-free double perovskite oxide as a promising cathode for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8253-8262.

    [3]Xie, Yun; Shi, Nai; Hu, Xueyu; Zhu, Kang; Peng, Ranran; Xia, Changrong, Chen, Ming. La-Doped Ba0.5Sr0.5Co0.8Fe0.2O3δ Air Electrodes with Enhanced Performance and Stability for Reversible Protonic Ceramic Cells[J]. Journal of The Electrochemical Society, 2023, 170(2): 024513.

    [4]Zhang, Lu; Huan, Daoming; Zhu, Zidi; Liu, Fangsheng; Dong, Dehua, Xia, Changrong. A coking-tolerance dendritic anode with exceptional power density toward direct ethanol-fueled solid oxide fuel cells[J]. Materials Today Energy, 2023, 34: 101290.

    [5]Liu, Xiaoye; Kong, Xiangkun; Xiang, Wenyi; Jiang, Yining; Xiong, Bingqinq; Ping, Weiwei; Xia, Changrong; Huan, Daoming, Wang, Chengwei. LiCoO2 sintering aid towards cathode-interface-enhanced garnet electrolytes[J]. Journal of Energy Chemistry, 2023, 84: 181-188.

    [6]Song, Rui; Zhang, Xiaoyu; Huan, Daoming; Li, Xinyu; Shi, Nai; Xia, Changrong; Peng, Ranran, Lu, Yalin. A novel triple-conductive cathode with high efficiency and stability for protonic ceramic fuel cells[J]. International journal of hydrogen energy, 2023, 48(84): 32943-32954.

    [7]Hana, Hairui; Jiang, Yunan; Zhanga, Shaowei, Xia, Changrong. Perspective on high-temperature surface oxygen exchange in porous mix-conducting ceramic for solid oxide cell[J]. Physical Chemistry Chemical Physics, 2023, 25: 12629-12640.

    [8]Zhao, Yongtao; Zhang, Shaowei; Su, Mingchao; Huan, Daoming; Peng, Ranran, Xia, Changrong. In-situ formed CuFe2O4 spinel coating by electroplating method for solid oxide fuel cell interconnect[J]. Chemical Engineering Journal, 2023, 470: 144397.

    [9]Qiu, Bingbing; Yang, Yi; Xue, Shuangshuang; Zhu, Kang; Wang, Lenan; Shi, Nai; Hu, Xueyu; Xia, Changrong; Peng, Ranran, Huang, Haoliang. Downward band bending as an efficient strategy to accelerate oxygen exchange kinetics in mixed conducting oxides-studies on different oriented LSCF thin films[J]. The Journal of Physical Chemistry C, 2023, 127(29): 14476-14485.

    [10]Zhang, Binze; Zhang, Zhen; Zhang, Lijie; Tang, Kaibin, Xia, Changrong. A perovskite infiltrated cathode of metal-supported solid oxide electrolysis cell for CO2 electrolysis[J]. International journal of hydrogen energy, 2024, 49: 417-423.

    [11]Li, Xinyu; Chen, Zemin; Huan, Daoming; Qiu, Bingbing; Zhu, Kang; Qi, Zeming; Liu, Hengjie; Xia, Changrong; Peng, Ranran, Lu, Yalin. Highly Active Cathode Achieved by Constructing Surface Proton Acid Sites through Electronic Regulation of Heteroatoms[J]. ACS Materials Letters, 2023, 5(11): 2896-2905.

    [12]Huan, Daoming; Zhang, Lu; Zhu, Kang; Li, Xinyu; Peng, Ranran; Ding, Dong, Xia, Changrong. Improving Ruddlesden-Popper electrocatalysts through interstitial fluorination-driven rearrangements of local coordination environment[J]. Sustainable Materials and Technologies, 2023, 38: e00754.

    [13]Zhu, Kang; Shi, Nai; Zhang, Lijie; Huan, Daoming; Li, Xinyu; Zhang, Xiaoyu; Song, Rui; Xia, Changrong; Peng, Ranran, Lu, Yalin. Engineering oxygen vacancy to accelerate proton conduction in Y-doped BaZrO3[J]. Ceramics International, 2023, 49(9): 13321-13329.

    [14]Han, Hairui; Hu, Xueyu; Zhang, Binze; Zhang, Shaowei; Zhang, Yanxiang, Xia, Changrong. Method to determine the oxygen reduction reaction kinetics via porous dual-phase composites based on electrical conductivity relaxation[J]. Journal of Materials Chemistry A, 2023, 11(5): 2460-2471.

    [15]Ye, Lujuan; Zhu, Kang; Jiang, Yunan; Zhang, Shaowei; Peng, Ranran, Xia, Changrong. Carbon dioxide reduction processes on a samarium doped ceria electrocatalyst with exsolved Fe particles[J]. Journal of Materials Chemistry A, 2023, 11(20): 10646-10658.



    2022

    [1]Huan, Daoming; Zhang, Lu; Zhu, Kang; Li, Xinyu; Zhang, Binze; Shi, Jialin; Peng, Ranran; Xia, Changrong. Tailoring the structural stability, electrochemical performance and CO2 tolerance of aluminum doped SrFeO3[J]. Separation and Purification Technology, 2022, 290: 120843.

    [2]Su, Taolong; Zhang, Tao; Xie, Hui; Zhong, Jianjun, Xia, Changrong. Investigation into structure and property of W and Ti co-doped SrFeO3 perovskite as electrode of symmetrical solid oxide fuel cell[J]. International journal of hydrogen energy, 2022, 47(36): 16272-16282.

    [3]Zhang, Lu; Huan, Daoming; Zhu, Kang; Dai, Pengqi; Peng, Ranran, Xia, Changrong. Tuning the phase transition of SrFeO3δ by Mn toward enhanced catalytic activity and CO2 resistance for the oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17358-17368.

    [4]Li, Xinyu; Chen, Zemin; Yang, Yi; Huan, Daoming; Su, Hui; Zhu, Kang; Shi, Nai; Qi, Zeming; Zheng, Xusheng; Pan, Haibin; Zhan, Zhongliang; Xia, Changrong; Peng, Ranran; Wei, Shiqiang, Lu, Yalin. Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells[J]. Applied Catalysis B: Environmental, 2022, 316.

    [5]Zhang, Shaowei; Jiang, Yunan; Han, Hairui; Li, Yihang, Xia, Changrong. Perovskite oxyfluoride ceramic with in situ exsolved Ni–Fe nanoparticles for direct CO2 electrolysis in solid oxide electrolysis cells[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 28854-28864.

    [6]Heng, Zefeng; Wan, Yanhong, Xia, Changrong. Calcium stabilized La0.6Sr0.4Fe0.8Mn0.2O3-δ perovskite as ceramic fuel electrode for solid oxide cell[J]. Journal of Power Sources, 2022, 537: 231535.

    [7]Zhang, Shaowei; Yang, Chengyue; Jiang, Yunan; Li, Ping, Xia, Changrong. A robust fluorine-containing ceramic cathode for direct CO2 electrolysis in solid oxide electrolysis cells[J]. Journal of Energy Chemistry, 2023, 77: 300-309.

    [8]Zhang, Xiaoyu; Song, Rui; Huan, Daoming; Zhu, Kang; Li, Xinyu; Han, Hairui; Xia, Changrong; Peng, Ranran, Lu, Yalin. Surface self-assembly protonation triggering triple-conductive heterostructure with highly enhanced oxygen reduction for protonic ceramic fuel cells[J]. Small, 2022, 18(49): 2205190.

    [9]张璐; 宦道明, 夏长荣. 固体氧化物燃料电池氧化物修饰镧锶钴铁阴极研究进展[J]. 陶瓷学报, 2022, 43(5): 799-814.

    [10]Zhu, Kang; Shi, Nai; Zhang, Lijie; Huan, Daoming; Li, Xinyu; Zhang, Xiaoyu; Song, Rui; Xia, Changrong; Peng, Ranran, Lu, Yalin. Engineering oxygen vacancy to accelerate proton conduction in Y-doped BaZrO3[J]. Ceramics International, 2023, 49(9): 13321-13329.

    [11]Han, Hairui; Hu, Xueyu; Zhang, Binze; Zhang, Shaowei; Zhang, Yanxiang, Xia, Changrong. Method to determine the oxygen reduction reaction kinetics via porous dual-phase composites based on electrical conductivity relaxation[J]. Journal of Materials Chemistry A, 2023, 11(5): 2460-2471.

    [12]Ye, Lujuan; Zhu, Kang; Jiang, Yunan; Zhang, Shaowei; Peng, Ranran, Xia, Changrong. Carbon dioxide reduction processes on a samarium doped ceria electrocatalyst with exsolved Fe particles[J]. Journal of Materials Chemistry A, 2023, 11(20): 10646-10658.

    [13]Li, Ping; Xuan, Yimin; Jiang, Biao; Zhang, Shaowei, Xia, Changrong. Hollow La0.6Sr0.4Ni0.2Fe0.75Mo0.05O3-δ electrodes with exsolved FeNi3 in quasi-symmetrical solid oxide electrolysis cells for direct CO2 electrolysis[J]. Electrochemistry Communications, 2022, 134: 107188.

    [14]Jiang, Yunan; Ye, Lujuan; Zhang, Shaowei, Xia, Changrong. Doped ceria with exsolved Fe 0 nanoparticles as a Sr-free cathode for CO2 electrolysis in SOECs at reduced temperatures[J]. Journal of Materials Chemistry A, 2022, 10(17): 9380-9383.

    [15]Su, Mingchao; Huan, Daoming; Hu, Xueyu; Zhu, Kang; Peng, Ranran, Xia, Changrong. Understanding the favorable CO2 tolerance of Ca-doped LaFeO3 perovskite cathode for solid oxide fuel cells[J]. Journal of Power Sources, 2022, 521: 230907.

    [16]宦道明; 张璐; 彭冉冉, 夏长荣. 固体氧化物燃料电池无钴钙钛矿阴极材料SrFeO3-δ 的掺杂改性[J]. 陶瓷学报, 2022, 43(1): 1-12.

    [17]Wan, Yanhong; Yang, Yi; Lu, Yalin; Peng, Ranran, Xia, Changrong. A strategy to enhance the catalytic activity of electrode materials by doping bismuth for symmetrical solid oxide electrolysis cells[J]. ACS Applied Energy Materials, 2022, 5(2): 2339-2348.


    2021

    [1]Zhang, Shaowei; Zhu, Kang; Hu, Xueyu; Peng, Ranran, Xia, Changrong. Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6δ perovskite as a ceramic anode for solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(43): 24336-24347.

    [2]Hu, Xueyu; Xie, Yun; Wan, Yanhong; Yang, Yi; Wu, Xiaojun, Xia, Changrong. Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance[J]. Applied Catalysis B: Environmental, 2021, 286: 119901.

    [3]Shi, Nai; Xie, Yun; Yang, Yi; Huan, Daoming; Pan, Yang; Peng, Ranran; Xia, Changrong; Chen, Chusheng; Zhan, Zhongliang, Lu, Yalin. Infiltrated Ni0.08Co0.02CeO2–x@ Ni0.8Co0.2 catalysts for a finger-like anode in direct methane-fueled solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 4943-4954.

    [4]Jiang, Yunan; Wang, Shuang; Xu, Jun; Zheng, Minghao; Yang, Yi; Wu, Xiaojun, Xia, Changrong. Hydrogen Oxidation Pathway Over Ni–Ceria Electrode: Combined Study of DFT and Experiment[J]. Frontiers in Chemistry, 2021, 8: 591322.

    [5]Xia, Yuling; Guo, Kaili; Hu, Bobing; Peng, Ranran, Xia, Changrong. Gold particle effect on high temperature oxygen reduction reaction via lanthanum strontium cobaltite ferrite electrocatalyst[J]. Electrochemistry Communications, 2021, 126: 107027.

    [6]Jiang, Yunan; Chen, Fanglin, Xia, Changrong. A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells[J]. Journal of Power Sources, 2021, 493: 229713.

    [7]Yang, Yi; Shi, Nai; Xie, Yun; Li, Xinyu; Hu, Xueyu; Zhu, Kang; Huan, Daoming; Peng, Ranran; Xia, Changrong, Lu, Yalin. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells[J]. Electrochimica Acta, 2021, 389: 138453.

    [8]Huan, Daoming; Zhang, Lu; Zhu, Kang; Li, Xinyu; Shi, Nai; Yang, Yi; Xia, Changrong; Xie, Yun, Peng, Ranran. Oxygen vacancy-engineered cobalt-free Ruddlesden-Popper cathode with excellent CO2 tolerance for solid oxide fuel cells[J]. Journal of Power Sources, 2021, 497: 229872.

    [9]Xie, Yun; Hu, Xueyu; Shi, Nai; Peng, Ranran; Chen, Ming, Xia, Changrong. La-doped Ba0.5Sr0.5Co0.8Fe0.2O3-d as cathode for protonic-conducting solid oxide fuel cells with enhanced structure stability[J]. ECS Transactions, 2021, 103(1): 1525.

    [10]Zhu, Kang; Yang, Yi; Huan, Daoming; Hu, Xueyu; Shi, Nai; Xie, Yun; Li, Xinyu; Xia, Changrong; Peng, Ranran, Lu, Yalin. Theoretical and Experimental Investigations on K-doped SrCo0.9Nb0.1O3-δ as a promising cathode for proton-conducting solid oxide fuel cells[J]. ChemSusChem, 2021, 14(18): 3876-3886.

    [11]Zhang, Binze; Wan, Yanhong; Hua, Zihui; Tang, Kaibin, Xia, Changrong. Tungsten-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells[J]. ACS Applied Energy Materials, 2021, 4(8): 8401-8409.

    [12]Zhang, Lijie; Li, Yihang; Zhang, Binze; Wan, Yanhong; Xu, Zheqiang; Zhang, Shaowei; Zhu, Tenglong, Xia, Changrong. (La,Sr)(Ti,Fe)O3δ perovskite with in‐situ constructed FeNi3 nanoparticles as fuel electrode for reversible solid oxide cell[J]. International Journal of Energy Research, 2021, 45(15): 21264-21273.

    [13]Li, Ping; Xuan, Yimin; Jiang, Biao; Zhang, Shaowei, Xia, Changrong. Hollow La0.6Sr0.4Ni0.2Fe0.75Mo0.05O3-δ electrodes with exsolved FeNi3 in quasi-symmetrical solid oxide electrolysis cells for direct CO2 electrolysis[J]. Electrochemistry Communications, 2022, 134: 107188.

    [14]Jiang, Yunan; Ye, Lujuan; Zhang, Shaowei, Xia, Changrong. Doped ceria with exsolved Fe 0 nanoparticles as a Sr-free cathode for CO2 electrolysis in SOECs at reduced temperatures[J]. Journal of Materials Chemistry A, 2022, 10(17): 9380-9383.

    [15]Su, Mingchao; Huan, Daoming; Hu, Xueyu; Zhu, Kang; Peng, Ranran, Xia, Changrong. Understanding the favorable CO2 tolerance of Ca-doped LaFeO3 perovskite cathode for solid oxide fuel cells[J]. Journal of Power Sources, 2022, 521: 230907.

    [16]宦道明; 张璐; 彭冉冉, 夏长荣. 固体氧化物燃料电池无钴钙钛矿阴极材料SrFeO3-δ 的掺杂改性[J]. 陶瓷学报, 2022, 43(1): 1-12.

    [17]Wan, Yanhong; Yang, Yi; Lu, Yalin; Peng, Ranran, Xia, Changrong. A strategy to enhance the catalytic activity of electrode materials by doping bismuth for symmetrical solid oxide electrolysis cells[J]. ACS Applied Energy Materials, 2022, 5(2): 2339-2348.


    2020

    [1]Huan, Daoming; Zhang, Lu; Li, Xinyu; Xie, Yun; Shi, Nai; Xue, Shuangshuang; Xia, Changrong; Peng, Ranran, Lu, Yalin. A Durable Ruddlesden‐Popper Cathode for Protonic Ceramic Fuel Cells[J]. ChemSusChem, 2020, 13(18): 4994-5003.

    [2]Zhang, Yanxiang; Yan, Fuyao; Hu, Bobing; Xia, Changrong, Yan, Mufu. Chemical relaxation in porous ionic–electronic conducting materials represented by the distribution of characteristic times[J]. Journal of Materials Chemistry A, 2020, 8(34): 17442-17448.

    [3]Nadeem, Mubashar; Li, Yihang; Bouwmeester, Henny JM, Xia, Changrong. PbO effect on the oxygen reduction reaction in intermediate-temperature solid oxide fuel cell[J]. International journal of hydrogen energy, 2020, 45(46): 25299-25306.

    [4]Yang, Yi; Wang, Shuang; Jiang, Yunan; Wu, Xiaojun; Xia, Changrong; Peng, Ranran, Lu, Yalin. CO2 activation and reduction on Pt-CeO2-based catalysts[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17092-17101.

    [5]Su, Taolong; Li, Yihang; Yang, Yi; Xu, Zheqiang; Shi, Nai; Wan, Yanhong; Xie, Yun; Huan, Daoming; Xue, Shuangshuang, Xia, Changrong. Effect of tungsten doping on strontium ferrite electrode for symmetrical solid oxide electrochemical cell[J]. International journal of hydrogen energy, 2020, 45(43): 23401-23410.

    [6]Li, Xinyu; Huan, Daoming; Shi, Nai; Yang, Yi; Wan, Yanhong; Xia, Changrong; Peng, Ranran, Lu, Yalin. Defects evolution of Ca doped La2NiO4+δ and its impact on cathode performance in proton-conducting solid oxide fuel cells[J]. International journal of hydrogen energy, 2020, 45(35): 17736-17744.

    [7]Zhang, Shaowei; Wan, Yanhong; Xu, Zheqiang; Xue, Shuangshuang; Zhang, Lijie; Zhang, Binze, Xia, Changrong. Bismuth doped La0.75Sr0.25Cr0.5Mn0.5O3δ perovskite as a novel redox-stable efficient anode for solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2020, 8(23): 11553-11563.

    [8]Shi, Nai; Xue, Shuangshuang; Xie, Yun; Yang, Yi; Huan, Daoming; Pan, Yang; Peng, Ranran; Xia, Changrong; Zhan, Zhongliang, Lu, Yalin. Co-generation of electricity and olefin via proton conducting fuel cells using (Pr0.3Sr0.7)0.9Ni0.1Ti0.9O3 catalyst layers[J]. Applied Catalysis B: Environmental, 2020, 272: 118973.

    [9]Yang, Jie; Wang, Lihong; Jiang, Xuexin, Xia, Changrong. AlN nanoparticles prepared through a gelation-polymerization process[J]. Ceramics International, 2020, 46(11): 17486-17494.

    [10]Xie, Yun; Shi, Nai; Hu, Xueyu; Liu, Minqian; Yang, Yi; Huan, Daoming; Pan, Yang; Peng, Ranran, Xia, Changrong. Novel in-situ MgO nano-layer decorated carbon-tolerant anode for solid oxide fuel cells[J]. International journal of hydrogen energy, 2020, 45(20): 11791-11801.

    [11]Xu, Zheqiang; Hu, Xueyu; Wan, Yanhong; Xue, Shuangshuang; Zhang, Shaowei; Zhang, Lijie; Zhang, Binze, Xia, Changrong. Electrochemical performance and anode reaction process for Ca doped Sr2Fe1.5Mo0.5O6-δ as electrodes for symmetrical solid oxide fuel cells[J]. Electrochimica Acta, 2020, 341: 136067.

    [12]Shi, Nai; Xie, Yun; Yang, Yi; Xue, Shuangshuang; Li, Xinyu; Zhu, Kang; Huan, Daoming; Peng, Ranran; Xia, Changrong, Lu, Yalin. Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability[J]. Materials for Renewable and Sustainable Energy, 2020, 9: 1-18.

    [13]Nadeem, Mubashar; Wan, Yanhong, Xia, Changrong. The effect of group IIIA oxides on the oxygen reduction reaction at cathodes for intermediate-temperature solid oxide fuel cells[J]. Composites Part B: Engineering, 2020, 189: 107924.

    [14]Wan, Yanhong; Xing, Yulin; Xu, Zheqiang; Xue, Shuangshuang; Zhang, Shaowei, Xia, Changrong. A-site bismuth doping, a new strategy to improve the electrocatalytic performances of lanthanum chromate anodes for solid oxide fuel cells[J]. Applied Catalysis B: Environmental, 2020, 269: 118809.

    [15]Ru, Yanlei; Sang, Junkang; Xia, Changrong; Wei, Wen-Cheng J, Guan, Wanbing. Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-sided cathodes[J]. International journal of hydrogen energy, 2020, 45(11): 7069-7076.


    2019

    [1]Wan, Yanhong; Xing, Yulin; Xie, Yun; Shi, Nai; Xu, Jun, Xia, Changrong. Vanadium-doped strontium molybdate with exsolved Ni nanoparticles as anode material for solid oxide fuel cells[J]. ACS applied materials & interfaces, 2019, 11(45): 42271-42279.

    [2]Zhang, Yanxiang; Yan, Mufu; Wan, Yanhong; Jiao, Zhenjun; Chen, Yu; Chen, Fanglin; Xia, Changrong, Ni, Meng. High-throughput 3D reconstruction of stochastic heterogeneous microstructures in energy storage materials[J]. npj Computational Materials, 2019, 5(1): 11.

    [3]Jiang, Yunan; Yang, Yi; Xia, Changrong, Bouwmeester, Henny J. M. Sr2Fe1.4Mn0.1Mo0.5O6δ perovskite cathode for highly efficient CO2 electrolysis[J]. Journal of Materials Chemistry A, 2019, 7(40): 22939-22949.

    [4]Xue, Shuangshuang; Shi, Nai; Wan, Yanhong; Xu, Zheqiang; Huan, Daoming; Zhang, Shaowei; Xia, Changrong; Peng, Ranran, Lu, Yalin. Novel carbon and sulfur-tolerant anode material FeNi3@PrBa(Fe,Ni)1.9Mo0.1O5+δ for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(38): 21783-21793.

    [5]Zhang, Yanxiang; Yan, Fuyao; Yan, Mufu; Wan, Yanhong; Jiao, Zhenjun; Xia, Changrong; Chen, Fanglin, Ni, Meng. High-throughput, super-resolution 3D reconstruction of nano-structured solid oxide fuel cell electrodes and quantification of microstructure-property relationships[J]. Journal of Power Sources, 2019, 427: 112-119.

    [6]Xu, Zheqiang; Li, Yihang; Wan, Yanhong; Zhang, Shaowei, Xia, Changrong. Nickel enriched Ruddlesden-Popper type lanthanum strontium manganite as electrode for symmetrical solid oxide fuel cell[J]. Journal of Power Sources, 2019, 425: 153-161.

    [7]Hu, Xueyu; Li, Mei; Xie, Yun; Yang, Yi; Wu, Xiaojun, Xia, Changrong. Oxygen-deficient Ruddlesden–Popper-type lanthanum strontium cuprate doped with bismuth as a cathode for solid oxide fuel cells[J]. ACS applied materials & interfaces, 2019, 11(24): 21593-21602.

    [8]Wang, Wanhua; Yang, Yi; Huan, Daoming; Wang, Likun; Shi, Nai; Xie, Yun; Xia, Changrong; Peng, Ranran, Lu, Yalin. An excellent OER electrocatalyst of cubic SrCoO3δ prepared by a simple F-doping strategy[J]. Journal of Materials Chemistry A, 2019, 7(20): 12538-12546.

    [9]Zhang, Yanxiang; Yan, Fuyao; Ma, Jingbo; Yan, Mufu; Ni, Meng, Xia, Changrong. In operando monitoring of reaction-diffusion streamlines and uncovering of electrochemo-structural interactions in electrodes[J]. Journal of Materials Chemistry A, 2019, 7(17): 10256-10263.

    [10]Shi, Nai; Xie, Yun; Huan, Daoming; Yang, Yi; Xue, Shuangshuang; Qi, Zeming; Pan, Yang; Peng, Ranran; Xia, Changrong, Lu, Yalin. Controllable CO2 conversion in high performance proton conducting solid oxide electrolysis cells and the possible mechanisms[J]. Journal of Materials Chemistry A, 2019, 7(9): 4855-4864.

    [11]Su, Taolong; Li, Yihang; Xue, Shuangshuang; Xu, Zheqiang; Zheng, Minghao, Xia, Changrong. Kinetics of CO2 electrolysis on composite electrodes consisting of Cu and samaria-doped ceria[J]. Journal of Materials Chemistry A, 2019, 7(4): 1598-1606.

    [12]Li, Yihang; Li, Yong; Wan, Yanhong; Xie, Yun; Zhu, Junfa; Pan, Haibin; Zheng, Xusheng, Xia, Changrong. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances[J]. Advanced Energy Materials, 2019, 9(3): 1803156.


    2018

    [1]Xie, Yun; Shi, Nai; Huan, Daoming; Tan, Wenzhou; Zhu, Junfa; Zheng, Xusheng; Pan, Haibin; Peng, Ranan, Xia, Changrong. A stable and efficient cathode for fluorine-containing proton-conducting solid oxide fuel cells[J]. ChemSusChem, 2018, 11(19): 3423-3430.

    [2]Wan, Yanhong; Xing, Yulin; Li, Yihang; Huan, Daoming, Xia, Changrong. Thermal cycling durability improved by doping fluorine to PrBaCo2O5+δ as oxygen reduction reaction electrocatalyst in intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2018, 402: 363-372.

    [3]Huan, Daoming; Wang, Wanhua; Xie, Yun; Shi, Nai; Wan, Yanhong; Xia, Changrong; Peng, Ranran, Lu, Yalin. Investigation of real polarization resistance for electrode performance in proton-conducting electrolysis cells[J]. Journal of Materials Chemistry A, 2018, 6(38): 18508-18517.

    [4]Yang, Yi; Li, Yihang; Jiang, Yunan; Zheng, Minghao; Hong, Tao; Wu, Xiaojun, Xia, Changrong. The electrochemical performance and CO2 reduction mechanism on strontium doped lanthanum ferrite fuel electrode in solid oxide electrolysis cell[J]. Electrochimica Acta, 2018, 284: 159-167.

    [5]Li, Yihang; Zou, Shuxian; Ju, Jiangwei, Xia, Changrong. Characteristics of nano-structured SFM infiltrated onto YSZ backbone for symmetrical and reversible solid oxide cells[J]. Solid State Ionics, 2018, 319: 98-104.

    [6]Zheng, Minghao; Gao, Jinghui, Xia, Changrong. H2 oxidation pathways on Ni-ceria surface by electrical conductivity relaxation method[J]. Solid State Ionics, 2018, 319: 92-97.

    [7]Nadeem, Mubashar; Hu, Bobing, Xia, Changrong. Effect of NiO addition on oxygen reduction reaction at lanthanum strontium cobalt ferrite cathode for solid oxide fuel cell[J]. International journal of hydrogen energy, 2018, 43(16): 8079-8087.

    [8]Yang, Yi; Li, Mei; Ren, Yuyu; Li, Yihang, Xia, Changrong. Magnesium oxide as synergistic catalyst for oxygen reduction reaction on strontium doped lanthanum cobalt ferrite[J]. International journal of hydrogen energy, 2018, 43(7): 3797-3802.

    [9]Li, Yihang; Zhan, Zhongliang, Xia, Changrong. Highly efficient electrolysis of pure CO2 with symmetrical nanostructured perovskite electrodes[J]. Catalysis Science & Technology, 2018, 8(4): 980-984.

    [10]Zheng, Minghao; Wang, Shuang; Yang, Yi, Xia, Changrong. Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni–yttria stabilized zirconia cathodes for solid oxide electrolysis cells[J]. Journal of Materials Chemistry A, 2018, 6(6): 2721-2729.

    [11]Huan, Daoming; Shi, Nai; Zhang, Lu; Tan, Wenzhou; Xie, Yun; Wang, Wanhua; Xia, Changrong; Peng, Ranran, Lu, Yalin. New, efficient, and reliable air electrode material for proton-conducting reversible solid oxide cells[J]. ACS applied materials & interfaces, 2018, 10(2): 1761-1770.


    2017

    [1]Li, Yihang; Chen, Xinran; Yang, Yi; Jiang, Yunan, Xia, Changrong. Mixed-conductor Sr2Fe1.5Mo0.5O6δ as robust fuel electrode for pure CO2 reduction in solid oxide electrolysis cell[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11403-11412.

    [2]Wan, Yanhong; Hu, Bobing, Xia, Changrong. Oxygen reduction at the three-phase boundary of PrBaCo2O5+δ-Sm0.2Ce0.8O1.9 composite[J]. Electrochimica Acta, 2017, 252: 171-179.

    [3]Li, Yihang; Hu, Bobing; Xia, Changrong; Xu, Wayne Q; Lemmon, John P, Chen, Fanglin. A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance[J]. Journal of Materials Chemistry A, 2017, 5(39): 20833-20842.

    [4]Shi, Nai; Su, Feng; Huan, Daoming; Xie, Yun; Lin, Jie; Tan, Wenzhou; Peng, Ranran; Xia, Changrong; Chen, Chusheng, Lu, Yalin. Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology[J]. Journal of Materials Chemistry A, 2017, 5(37): 19664-19671.

    [5]Zhu, Shiyue; Ding, Dong; Li, Mei, Xia, Changrong. Effect of Samaria doped ceria impregnation on the electrochemical performance of strontium doped lanthanum chromium manganite anode for solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2017, 164(9): F916.

    [6]Zhang, Lu; Hong, Tao; Li, Yihang, Xia, Changrong. CaO effect on the electrochemical performance of lanthanum strontium cobalt ferrite cathode for intermediate-temperature solid oxide fuel cell[J]. International journal of hydrogen energy, 2017, 42(27): 17242-17250.

    [7]Zhu, Zhesheng; Li, Mei; Xia, Changrong, Bouwmeester, Henny JM. Bismuth-doped La1.75Sr0.25NiO4+δ as a novel cathode material for solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2017, 5(27): 14012-14019.

    [8]Lin, Jie; Miao, Guoshuan; Xia, Changrong; Chen, Chusheng; Wang, Shaorong, Zhan, Zhongliang. Optimization of anode structure for intermediate temperature solid oxide fuel cell via phase‐inversion cotape casting[J]. Journal of the American Ceramic Society, 2017, 100(8): 3794-3800.

    [9]Zhang, Lu; Wang, Shuang; Huang, Haoliang; Li, Yihang; Lu, Yalin, Xia, Changrong. Promotion effect of metal nanoparticle on surface exchange reaction of (La,Sr)MnO3 film with different orientation[J]. Journal of The Electrochemical Society, 2017, 164(6): F610.

    [10]Zheng, Minghao; Wang, Shuang; Li, Mei, Xia, Changrong. H2 and CO oxidation process at the three-phase boundary of Cu-ceria cermet anode for solid oxide fuel cell[J]. Journal of Power Sources, 2017, 345: 165-175.

    [11]Hong, Tao; Zhao, Mingyang; Brinkman, Kyle; Chen, Fanglin, Xia, Changrong. Enhanced oxygen reduction activity on Ruddlesden–Popper phase decorated La0.8Sr0.2FeO3δ 3D heterostructured cathode for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8659-8668.

    [12]Li, Mei; Zheng, Minghao; Hu, Bobing; Zhang, Yanxiang, Xia, Changrong. Improving electrochemical performance of lanthanum strontium ferrite by decorating instead of doping cobaltite[J]. Electrochimica Acta, 2017, 230: 196-203.

    [13]Li, Mei; Sun, Zhongti; Yang, Wenqiang; Hong, Tao; Zhu, Zhesheng; Zhang, Yanxiang; Wu, Xiaojun, Xia, Changrong. Mechanism for the enhanced oxygen reduction reaction of La0.6Sr0.4Co0.2Fe0.8O3δ by strontium carbonate[J]. Physical Chemistry Chemical Physics, 2017, 19(1): 503-509.


    Before 2017

    [1]Xia, Changrong, Liu, Meilin. Novel cathodes for low‐temperature solid oxide fuel cells[J]. Advanced Materials, 2002, 14(7): 521-523.

    [2]Zhang, Yanxiang, Xia, Changrong. A particle-layer model for solid-oxide-full-cell cathodes with different structures[J]. Journal of Power Sources, 2010, 195(13): 4206-4212.

    [3]Hong, Tao; Brinkman, Kyle, Xia, Changrong. Copper oxide as a synergistic catalyst for the oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3δ perovskite structured electrocatalyst[J]. Journal of Power Sources, 2016, 329: 281-289.

    [4]Wang, Yao; Liu, Tong; Li, Mei; Xia, Changrong; Zhou, B, Chen, Fanglin. Exsolved Fe–Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells[J]. Journal of Materials Chemistry A, 2016, 4(37): 14163-14169.

    [5]Hu, Bobing, Xia, Changrong. Factors influencing the measured surface reaction kinetics parameters[J]. Asia‐Pacific Journal of Chemical Engineering, 2016, 11(3): 327-337.

    [6]Hong, Tao; Brinkman, Kyle S, Xia, Changrong. Barium Carbonate Nanoparticles as Synergistic Catalysts for the Oxygen Reduction Reaction on La0.6Sr0.4Co0.2Fe0.8O3δ Solid‐Oxide Fuel Cell Cathodes[J]. ChemElectroChem, 2016, 3(5): 805-813.

    [7]Chen, Bin; Xu, Haoran; Chen, Long; Li, Yihang; Xia, Changrong, Ni, Meng. Modelling of one-step methanation process combining SOECs and Fischer-Tropsch-like reactor[J]. Journal of The Electrochemical Society, 2016, 163(11): F3001.

    [8]Hu, Bobing; Li, Yihang, Xia, Changrong. A novel method to determine the I–V curve and polarization resistance at the three-phase boundary of composite cathode[J]. International journal of hydrogen energy, 2016, 41(20): 8589-8594.

    [9]Zhang, Yanxiang; Chen, Yu; Li, Mei; Yan, Mufu; Ni, Meng, Xia, Changrong. A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2016, 308: 1-6.

    [10]Wang, Shuang; Zheng, Minghao; Li, Mei; Wu, Xiaojun, Xia, Changrong. Synergistic effects towards H2 oxidation on the Cu–CeO2 electrode: a combination study with DFT calculations and experiments[J]. Journal of Materials Chemistry A, 2016, 4(15): 5745-5754.

    [11]Li, Yihang; Chen, Long; Zhang, Lu, Xia, Changrong. Millimeter tubular solid oxide electrolysis cells with modified asymmetric hydrogen electrode[J]. International journal of hydrogen energy, 2016, 41(10): 5209-5214.

    [12]Ju, Jiangwei; Xie, Yun; Wang, Zhiyong; Zhang, Yanxiang, Xia, Changrong. Electrical performance of nano-structured La0.6Sr0.4Co0.2Fe0.8O3-δ impregnated onto yttria-stabilized zirconia backbone[J]. Journal of The Electrochemical Society, 2016, 163(5): F393.

    [13]Huan, Daoming; Wang, Zhiquan; Wang, Zhenbin; Peng, Ranran; Xia, Changrong, Lu, Yalin. High-performanced cathode with a two-layered R–P structure for intermediate temperature solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4592-4599.

    [14]Li, Mei; Ren, Yuyu; Zhu, Zhesheng; Zhu, Shiyue; Chen, Fanglin; Zhang, Yanxiang, Xia, Changrong. La0.4Bi0.4Sr0.2FeO3-δ as cobalt-free cathode for intermediate-temperature solid oxide fuel cell[J]. Electrochimica Acta, 2016, 191: 651-660.

    [15]Li, Yihang; Li, Pan; Hu, Bobing, Xia, Changrong. A nanostructured ceramic fuel electrode for efficient CO2/H2O electrolysis without safe gas[J]. Journal of Materials Chemistry A, 2016, 4(23): 9236-9243.

    [16]Hu, Bobing; Guo, Kaili; Li, Mei; Li, Yihang, Xia, Changrong. Effect of SDC grain size on the oxygen incorporation at the LSCF-SDC-Gas three-phase boundary[J]. Journal of The Electrochemical Society, 2015, 163(3): F190.

    [17]Ju, Jiangwei; Lin, Jie; Wang, Yusu; Zhang, Yanxiang, Xia, Changrong. Electrical performance of nanostructured strontium-doped lanthanum manganite impregnated onto yttria-stabilized zirconia backbone[J]. Journal of Power Sources, 2016, 302: 298-307.

    [18]Fan, Xing; You, Chun-Yan; Zhu, Ji-Liang; Chen, Lu, Xia, Chang-Rong. Fabrication of LSM-SDC composite cathodes for intermediate-temperature solid oxide fuel cells[J]. Ionics, 2015, 21: 2253-2258.

    [19]Su, Feng; Xia, Changrong, Peng, Ranran. Novel fluoride-doped barium cerate applied as stable electrolyte in proton conducting solid oxide fuel cells[J]. Journal of the European Ceramic Society, 2015, 35(13): 3553-3558.

    [20]Hu, Bobing; Wang, Yunlong; Zhu, Zhuoying; Xia, Changrong, Bouwmeester, Henny JM. Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation[J]. Journal of Materials Chemistry A, 2015, 3(19): 10296-10302.

    [21]Zhou, Yucun; Wu, Hao; Luo, Ting; Wang, Jianqiang; Shi, Yixiang; Xia, Changrong; Wang, Shaorong, Zhan, Zhongliang. A Nanostructured Architecture for Reduced‐Temperature Solid Oxide Fuel Cells[J]. Advanced Energy Materials, 2015, 5(11): 1500375.

    [22]Wang, Zhiquan; Yang, Wenqiang; Shafi, Shahid P; Bi, Lei; Wang, Zhenbin; Peng, Ranran; Xia, Changrong; Liu, Wei, Lu, Yalin. A high performance cathode for proton conducting solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(16): 8405-8412.

    [23]Hong, Tao; Chen, Fanglin, Xia, Changrong. Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell[J]. Journal of Power Sources, 2015, 278: 741-750.

    [24]Hong, Tao; Chen, Fanglin, Xia, Changrong. Barium carbonate nanoparticle as high temperature oxygen reduction catalyst for solid oxide fuel cell[J]. Electrochemistry Communications, 2015, 51: 93-97.

    [25]Zhang, Yanxiang; Xia, Changrong, Chen, Fanglin. Tortuosity factor of three-dimensional infiltrate network[J]. Journal of Power Sources, 2014, 269: 189-193.

    [26]Hu, Bobing; Wang, Yunlong, Xia, Changrong. Oxygen incorporation at the three-phase boundary of LSCF–SDC composite[J]. Journal of Power Sources, 2014, 269: 180-188.

    [27]Zhou, Yucun; Meng, Xie; Liu, Xuejiao; Pan, Xin; Li, Junliang; Ye, Xiaofeng; Nie, Huaiwen; Xia, Changrong; Wang, Shaorong, Zhan, Zhongliang. Novel architectured metal-supported solid oxide fuel cells with Mo-doped SrFeO3δ electrocatalysts[J]. Journal of Power Sources, 2014, 267: 148-154.

    [28]Hu, Bobing; Wang, Yunlong, Xia, Changrong. Effects of ceria conductivity on the oxygen incorporation at the LSCF-SDC-gas three-phase boundary[J]. Journal of The Electrochemical Society, 2014, 162(1): F33.

    [29]Yang, Wenqiang; Wang, Zhenbin; Wang, Zhiquan; Yang, Zhenghui; Xia, Changrong; Peng, Ranran; Wu, Xiaojun, Lu, Yalin. Enhanced Catalytic Activity toward O2 Reduction on Pt-Modified La1–xSrxCo1–yFeyO3δ Cathode: A Combination Study of First-Principles Calculation and Experiment[J]. ACS applied materials & interfaces, 2014, 6(23): 21051-21059.

    [30]Wu, Liuer; Zhao, Ling; Zhan, Zhongliang, Xia, Changrong. Cathode supported tubular solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3 electrocatalysts[J]. Journal of Power Sources, 2014, 266: 268-274.

    [31]Chen, Long; Chen, Fanglin, Xia, Changrong. Direct synthesis of methane from CO2–H2O co-electrolysis in tubular solid oxide electrolysis cells[J]. Energy & Environmental Science, 2014, 7(12): 4018-4022.

    [32]Wang, Zhenbin; Yang, Wenqiang; Zhu, Zhuoying; Peng, Ranran; Wu, Xiaojun; Xia, Changrong, Lu, Yalin. First-principles study of O2 reduction on BaZr1xCoxO3 cathodes in protonic-solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(39): 16707-16714.

    [33]Zhu, Shiyue; Wang, Yunlong; Rao, Yuanyuan; Zhan, Zhongliang, Xia, Changrong. Chemically-induced mechanical unstability of samaria-doped ceria electrolyte for solid oxide electrolysis cells[J]. International journal of hydrogen energy, 2014, 39(24): 12440-12447.

    [34]Ju, Jiangwei; Chen, Fanglin, Xia, Changrong. Ionic conductivity of impregnated samaria doped ceria for solid oxide fuel cells[J]. Electrochimica Acta, 2014, 136: 422-429.

    [35]Li, Meiling; Ni, Meng; Su, Feng, Xia, Changrong. Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes[J]. Journal of Power Sources, 2014, 260: 197-204.

    [36]Zhou, Yucun; Luo, Ting; Du, Xianlong; Wang, Jianqiang; Yang, Wei; Sun, Chunwen; Xia, Changrong; Wang, Shaorong, Zhan, Zhongliang. High Activity of Nanoporous-Sm0.2Ce0.8O2-δ@ 430L Composites for Hydrogen Electro-Oxidation in Solid Oxide Fuel Cells[J]. Advanced Energy Materials, 2014, 4(17).

    [37]Li, Mei; Wang, Yao; Wang, Yunlong; Chen, Fanglin, Xia, Changrong. Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11286-11294.

    [38]Wang, Y; Zhu, S; Zhan, Z, Xia, C. Mechanics behavior induced by chemical expansion for oxide anode of solid oxide fuel cells[J]. Fuel cells, 2014, 14(3): 372-377.

    [39]Zhang, Yanxiang; Ni, Meng; Xia, Changrong, Chen, Fanglin. A Sintering Kinetics Model for Ceramic Dual‐Phase Composite[J]. Journal of the American Ceramic Society, 2014, 97(8): 2580-2589.

    [40]Xia, Changrong, Liu, Meilin. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs[J]. Solid State Ionics, 2002, 152: 423-430.

    [41]Zhou, Yucun; Xin, Xianshuang; Li, Junliang; Ye, Xiaofeng; Xia, Changrong; Wang, Shaorong, Zhan, Zhongliang. Performance and degradation of metal-supported solid oxide fuel cells with impregnated electrodes[J]. International journal of hydrogen energy, 2014, 39(5): 2279-2285.

    [42]Chen, Long; Yao, Mutian, Xia, Changrong. Anode substrate with continuous porosity gradient for tubular solid oxide fuel cells[J]. Electrochemistry Communications, 2014, 38: 114-116.

    [43]Wang, Yunlong; Hu, Bobing; Zhu, Zhuoying; Bouwmeester, Henny JM, Xia, Changrong. Electrical conductivity relaxation of Sr2Fe1.5Mo0.5O6δ–Sm0.2Ce0.8O1.9 dual-phase composites[J]. Journal of Materials Chemistry A, 2014, 2(1): 136-143.

    [44]Hong, Tao; Wang, Yao, Xia, Changrong. Nano-structure effect on solid state fuel cells cathode durability[J]. Journal of Inorganic Materials, 2013, 28(11): 1187-1194.

    [45]Wang, Yunlong; Zhu, Zhuoying, Xia, Changrong. Hydrogen oxidation at metal–ceria boundary by electrical conductivity relaxation method[J]. Electrochemistry Communications, 2013, 36: 10-13.

    [46]He, Beibei; Wang, Zhenbin; Zhao, Ling; Pan, Xin; Wu, Xiaojun, Xia, Changrong. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2013, 241: 627-633.

    [47]Liu, Zhangbo; Ding, Dong; Liu, Mingfei; Ding, Xifeng; Chen, Dongchang; Li, Xiaxi; Xia, Changrong, Liu, Meilin. High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures[J]. Journal of Power Sources, 2013, 241: 454-459.

    [48]Wang, Zhenbin; Peng, Ranran; Zhang, Wenhua; Wu, Xiaojun; Xia, Changrong, Lu, Yalin. Oxygen reduction and transport on the La1xSrxCo1yFeyO3δ cathode in solid oxide fuel cells: A first-principles study[J]. Journal of Materials Chemistry A, 2013, 1(41): 12932-12940.

    [49]Wu, Liuer; Wang, Shuang; Wang, Shaorong, Xia, Changrong. Enhancing the performance of doped ceria interlayer for tubular solid oxide fuel cells[J]. Journal of Power Sources, 2013, 240: 241-244.

    [50]Liu, Zhangbo; Liu, Beibei; Ding, Dong; Liu, Mingfei; Chen, Fanglin, Xia, Changrong. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique[J]. Journal of Power Sources, 2013, 237: 243-259.

    [51]Wu, Kunjie; Yu, Yang; Shen, Kai; Xia, Changrong, Wang, Deliang. Effect of ultra-thin ZnO coating layer on the device performance of TiO2 dye sensitized solar cell[J]. Solar energy, 2013, 94: 195-201.

    [52]Ling, Yihan; Chen, Jie; Wang, Zhenbin; Xia, Changrong; Peng, Ranran, Lu, Yalin. New ionic diffusion strategy to fabricate proton-conducting solid oxide fuel cells based on a stable La2Ce2O7 electrolyte[J]. International journal of hydrogen energy, 2013, 38(18): 7430-7437.

    [53]Zhang, Yanxiang; Ni, Meng, Xia, Changrong. Microstructural insights into dual-phase infiltrated solid oxide fuel cell electrodes[J]. Journal of The Electrochemical Society, 2013, 160(8): F834.

    [54]Zhou, Yucun; Zhang, Zhencheng; Yuan, Chun; Li, Junliang; Xia, Changrong; Zhan, Zhongliang, Wang, Shaorong. Metal-supported solid oxide fuel cells with in-situ sintered (Bi2O3)0.7(Er2O3)0.3–Ag composite cathode[J]. International journal of hydrogen energy, 2013, 38(36): 16579-16583.

    [55]Liu, Zhangbo; Ding, Dong; Liu, Mingfei; Li, Xiaxi; Sun, Wenping; Xia, Changrong, Liu, Meilin. Highly active Sm0.2Ce0.8O1.9 powders of very low apparent density derived from mixed cerium sources[J]. Journal of Power Sources, 2013, 229: 277-284.

    [56]Pan, Xin; Wang, Zhenbin; He, Beibei; Wang, Shaorong; Wu, Xiaojun, Xia, Changrong. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell[J]. International journal of hydrogen energy, 2013, 38(10): 4108-4115.

    [57]Wang, Yao; Wang, Han; Liu, Tong; Chen, Fanglin, Xia, Changrong. Improving the chemical stability of BaCe0.8Sm0.2O3δ electrolyte by Cl doping for proton-conducting solid oxide fuel cell[J]. Electrochemistry Communications, 2013, 28: 87-90.

    [58]Wu, Liuer; Jiang, Zhiyi; Wang, Shaorong, Xia, Changrong. (La,Sr)MnO3–(Y,Bi)2O3 composite cathodes for intermediate-temperature solid oxide fuel cells[J]. International journal of hydrogen energy, 2013, 38(5): 2398-2406.

    [59]Yang, Wei; Hong, Tao; Li, Shuai; Ma, Zhaohui; Sun, Chunwen; Xia, Changrong, Chen, Liquan. Perovskite Sr1–xCexCoO3δ (0.05≤ x≤ 0.15) as Superior Cathodes for Intermediate Temperature Solid Oxide Fuel Cells[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1143-1148.

    [60]Zhang, Yanxiang; Sun, Qiong; Xia, Changrong, Ni, Meng. Geometric properties of nanostructured solid oxide fuel cell electrodes[J]. Journal of The Electrochemical Society, 2013, 160(3): F278.

    [61]Hong, Tao; Zhang, Lei; Chen, Fanglin, Xia, Changrong. Oxygen surface exchange properties of La0.6Sr0.4Co0.8Fe0.2O3δ coated with SmxCe1xO2δ[J]. Journal of Power Sources, 2012, 218: 254-260.

    [62]Zhang, Yanxiang; Chen, Kongfa; Xia, Changrong, Ni, Meng. A model for the delamination kinetics of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells[J]. International journal of hydrogen energy, 2012, 37(19): 13914-13920.

    [63]Wang, Yunlong; Wang, Yao, Xia, Changrong. Surface process of doped ceria reduction by electrical conductivity relaxation[J]. Journal of The Electrochemical Society, 2012, 159(9): F570.

    [64]Wang, Yunlong; Zhang, Yanxiang, Xia, Changrong. A novel method to determine the particle–particle fracture of yttria stabilized zirconia[J]. Journal of Power Sources, 2012, 211: 77-83.

    [65]Wang, Yunlong; Zhang, Lei; Chen, Fanglin, Xia, Changrong. Effects of doped ceria conductivity on the performance of La0.6Sr0.4Co0.2Fe0.8O3δ cathode for solid oxide fuel cell[J]. International journal of hydrogen energy, 2012, 37(10): 8582-8591.

    [66]Liu, Beibei; Liu, Zhangbo; Wang, Shuang; Xia, Changrong; Xie, Mingfeng; Cheng, Zhanjun, Li, Yuyang. Catalytic decomposition of methane on impregnated nickel based anodes with molecular-beam mass spectrometry and tunable synchrotron vacuum ultraviolet photoionization[J]. International journal of hydrogen energy, 2012, 37(10): 8354-8359.

    [67]Wang, Yao; Zhang, Han; Chen, Fanglin, Xia, Changrong. Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process[J]. Journal of Power Sources, 2012, 203: 34-41.

    [68]Liu, Zhangbo; Liu, Beibei; Ding, Dong; Jiang, Zhiyi, Xia, Changrong. Development of three-layer intermediate temperature solid oxide fuel cells with direct stainless steel based anodes[J]. International journal of hydrogen energy, 2012, 37(5): 4401-4405.

    [69]Wang, Yao; Zhang, Lei, Xia, Changrong. Enhancing oxygen surface exchange coefficients of strontium-doped lanthanum manganates with electrolytes[J]. International journal of hydrogen energy, 2012, 37(3): 2182-2186.

    [70]Zhang, Yanxiang; Xia, Changrong, Ni, Meng. Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes[J]. International journal of hydrogen energy, 2012, 37(4): 3392-3402.

    [71]Liu, Beibei; Guo, Weiwei; Chen, Fanglin, Xia, Changrong. Ga site doping and concentration variation effects on the conductivities of melilite-type lanthanum strontium gallate electrolytes[J]. International journal of hydrogen energy, 2012, 37(1): 961-966.

    [72]Zhao, Ling; He, Beibei; Gu, Jiaqiang; Liu, Feng; Chu, Xiangfeng, Xia, Changrong. Reaction model for cathodes cooperated with oxygen-ion conductors for solid oxide fuel cells using proton-conducting electrolytes[J]. International journal of hydrogen energy, 2012, 37(1): 548-554.

    [73]He, Beibei; Zhao, Ling; Song, Shuxiang; Liu, Tong; Chen, Fanglin, Xia, Changrong. Sr2Fe1.5Mo0.5O6δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2012, 159(5): B619.

    [74]Guan, Yong; Gong, Yunhui; Li, Wenjie; Gelb, Jeff; Zhang, Lei; Liu, Gang; Zhang, Xiaobo; Song, Xiangxia; Xia, Changrong, Xiong, Ying. Quantitative analysis of micro structural and conductivity evolution of Ni-YSZ anodes during thermal cycling based on nano-computed tomography[J]. Journal of Power Sources, 2011, 196(24): 10601-10605.

    [75]Liu, Zhangbo; Ding, Dong; Liu, Beibei; Guo, Weiwei; Wang, Wendong, Xia, Changrong. Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(20): 8561-8567.

    [76]He, Beibei; Wang, Wendong; Zhao, Ling, Xia, Changrong. Ni–LnOx (Ln=Dy, Ho, Er, Yb and Tb) cermet anodes for intermediate-temperature solid oxide fuel cells[J]. Electrochimica Acta, 2011, 56(20): 7071-7077.

    [77]Zhang, Lei; Liu, Yiqun; Zhang, Yanxiang; Xiao, Guoliang; Chen, Fanglin, Xia, Changrong. Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles[J]. Electrochemistry Communications, 2011, 13(7): 711-713.

    [78]Zhang, Lei; Li, Lan; Zhao, Fei; Chen, Fanglin, Xia, Changrong. Sm0.2Ce0.8O1.9/Y0.25Bi0.75O1.5 bilayered electrolytes for low-temperature SOFCs with Ag-Y0.25Bi0.75O1.5 composite cathodes[J]. Solid State Ionics, 2011, 192(1): 557-560.

    [79]Liu, Beibei; Ding, Dong; Liu, Zhangbo; Chen, Fanglin, Xia, Changrong. Synthesis and electrical conductivity of various melilite-type electrolytes Ln1+xSr1xGa3O7+x/2[J]. Solid State Ionics, 2011, 191(1): 68-72.

    [80]Wu, Xinfeng; Wang, He; Peng, Ranran; Xia, Changrong, Meng, Guangyao. Effect of A-site deficiency in BaCe0.8Sm0.2O3-δ on the electrode performance for proton conducting solid oxide fuel cells[J]. Solid State Ionics, 2011, 192(1): 611-614.

    [81]Zhang, Han; Zhao, Fei; Chen, Fanglin, Xia, Changrong. Nano-structured Sm0.5Sr0.5CoO3δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes[J]. Solid State Ionics, 2011, 192(1): 591-594.

    [82]Tian, Ruifen; Zhao, Fei; Chen, Fanglin, Xia, Changrong. Sintering of Samarium-doped ceria powders prepared by a glycine-nitrate process[J]. Solid State Ionics, 2011, 192(1): 580-583.

    [83]Zhao, Ling; He, Beibei; Shen, Junchong; Chen, Fanglin, Xia, Changrong. BaZr0.1Ce0.7Y0.2O3δ as an electronic blocking material for microtubular solid oxide fuel cells based on doped ceria electrolyte[J]. Electrochemistry Communications, 2011, 13(5): 450-453.

    [84]He, Beibei; Zhao, Ling; Song, Shuxiang; Jiang, Zhiyi, Xia, Changrong. Ni-Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells with stabilized zirconia electrolytes[J]. International journal of hydrogen energy, 2011, 36(9): 5589-5594.

    [85]Zhang, Yanxiang, Xia, Changrong. Film percolation for composite electrodes of solid oxide fuel cells[J]. Electrochimica Acta, 2011, 56(13): 4763-4769.

    [86]Zhao, Ling; Shen, Junchong; He, Beibei; Chen, Fanglin, Xia, Changrong. Synthesis, characterization and evaluation of PrBaCo2xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells[J]. International journal of hydrogen energy, 2011, 36(5): 3658-3665.

    [87]Zhang, Yanxiang; Wang, Yunlong; Wang, Yao; Chen, Fanglin, Xia, Changrong. Random-packing model for solid oxide fuel cell electrodes with particle size distributions[J]. Journal of Power Sources, 2011, 196(4): 1983-1991.

    [88]He, Beibei; Zhao, Ling; Wang, Wendong; Chen, Fanglin, Xia, Changrong. Electro-catalytic activity of Dy2O3 as a solid oxide fuel cell anode material[J]. Electrochemistry Communications, 2011, 13(2): 194-196.

    [89]Zhao, Ling; Zhang, Xiaozhen; He, Beibei; Liu, Beibei, Xia, Changrong. Micro-tubular solid oxide fuel cells with graded anodes fabricated with a phase inversion method[J]. Journal of Power Sources, 2011, 196(3): 962-967.

    [90]Liu, Beibei; Jiang, Zhiyi; Ding, Bo; Chen, Fanglin, Xia, Changrong. Bi0.5Sr0.5MnO3 as cathode material for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(3): 999-1005.

    [91]Xiao, Guoliang; Liu, Qiang; Zhao, Fei; Zhang, Lei; Xia, Changrong, Chen, Fanglin. Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte[J]. Journal of The Electrochemical Society, 2011, 158(5): B455.

    [92]Zhang, Lei; Chen, Fanglin, Xia, Changrong. Spin-coating derived solid oxide fuel cells operated at temperatures of 500° C and below[J]. International journal of hydrogen energy, 2010, 35(24): 13262-13270.

    [93]Zhang, Yanxiang, Xia, Changrong. A durability model for solid oxide fuel cell electrodes in thermal cycle processes[J]. Journal of Power Sources, 2010, 195(19): 6611-6618.

    [94]Changrong, Xia; Yunfeng, Gu; Dingkun, Peng, Guangyao, Meng. Soft chemical route and new solid oxide fuel cells[J]. Ionics, 1998, 4: 463-471.

    [95]Wu, Tianzhi; Rao, Yuanyuan; Peng, Ranran, Xia, Changrong. Fabrication and evaluation of Ag-impregnated BaCe0.8Sm0.2O1.9 composite cathodes for proton conducting solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(17): 5508-5513.

    [96]Jiang, Zhiyi; Lei, Zhiwei; Ding, Bo; Xia, Changrong; Zhao, Fei, Chen, Fanglin. Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones[J]. International journal of hydrogen energy, 2010, 35(15): 8322-8330.

    [97]Ding, Dong; Liu, Beibei; Gong, Mingyang; Liu, Xingbo, Xia, Changrong. Electrical properties of samaria-doped ceria electrolytes from highly active powders[J]. Electrochimica Acta, 2010, 55(15): 4529-4535.

    [98]Jiang, Zhi-yi; Xia, Chang-rong, Chen, Fang-lin. Efficient thickness of solid oxide fuel cell composite electrode[J]. Chinese Journal of Chemical Physics, 2010, 23(2): 217.

    [99]Zhang, Lei; Xia, Changrong; Zhao, Fei, Chen, Fanglin. Thin film ceria–bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La0.85Sr0.15MnO3δ–Y0.25Bi0.75O1.5 cathodes[J]. Materials Research Bulletin, 2010, 45(5): 603-608.

    [100]Jiang, Zhiyi; Xia, Changrong, Chen, Fanglin. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique[J]. Electrochimica Acta, 2010, 55(11): 3595-3605.

    [101]Sun, Min; Mu, Zhe-Xuan; Sheng, Guo-Ping; Liu, Xian-Wei; Zhang, Lei; Xia, Chang-Rong; Wang, Hua-Lin; Tong, Zhong-Hua, Yu, Han-Qing. Effects of a transient external voltage application on the bioanode performance of microbial fuel cells[J]. Electrochimica Acta, 2010, 55(9): 3048-3054.

    [102]Zhao, Fei; Zhang, Lei; Jiang, Zhiyi; Xia, Changrong, Chen, Fanglin. A high performance intermediate-temperature solid oxide fuel cell using impregnated La0. 6Sr0. 4CoO3− δ cathode[J]. Journal of Alloys and Compounds, 2009, 487(1-2): 781-785.

    [103]Zhao, Fei; Chen, Frank, Xia, ChangRong. Infiltrated Electrodes for Intermediate-Temperature Solid Oxide Fuel Cells[J]. ECS Transactions, 2009, 19(18): 43.

    [104]He, Fei; Wu, Tianzhi; Peng, Ranran, Xia, Changrong. Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3δ–BaCe0.8Sm0.2O3δ composite cathode for solid oxide fuel cells with proton conducting electrolyte[J]. Journal of Power Sources, 2009, 194(1): 263-268.

    [105]Xiao, G; Jiang, Z; Li, H; Xia, C, Chen, L. Studies on composite cathode with nanostructured Ce0.9Sm0.1O1.95 for intermediate temperature solid oxide fuel cells[J]. Fuel cells, 2009, 9(5): 650-656.

    [106]Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen, Xia, Chang-rong. Samaria-doped ceria modified Ni/YSZ anode for direct methane fuel in tubular solid oxide fuel cells by impregnation method[J]. Chinese Journal of Chemical Physics, 2009, 22(4): 429.

    [107]Xu, Xingyan; Cao, Chuanbao; Xia, Changrong, Peng, Dingkun. Electrochemical performance of LSM–SDC electrodes prepared with ion-impregnated LSM[J]. Ceramics International, 2009, 35(6): 2213-2218.

    [108]Zhang, Longshan; Gao, Jianfeng; Liu, Mingfei, Xia, Changrong. Effect of impregnation of Sm-doped CeO2 in NiO/YSZ anode substrate prepared by gelcasting for tubular solid oxide fuel cell[J]. Journal of Alloys and Compounds, 2009, 482(1-2): 168-172.

    [109]Wu, Tianzhi; Zhao, Yingqi; Peng, Ranran, Xia, Changrong. Nano-sized Sm0.5Sr0.5CoO3δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9[J]. Electrochimica Acta, 2009, 54(21): 4888-4892.

    [110]Wang, He; Peng, Ranran; Wu, Xinfeng; Hu, Jinlin, Xia, Changrong. Sintering behavior and conductivity study of yttrium‐doped BaCeO3–BaZrO3 solid solutions using ZnO additives[J]. Journal of the American Ceramic Society, 2009, 92(11): 2623-2629.

    [111]Bi, Lei; Zhang, Shangquan; Lin, Bin; Fang, Shumin; Xia, Changrong, Liu, Wei. Screen-printed BaCe0.8Sm0.2O3δ thin membrane solid oxide fuel cells with surface modification by spray coating[J]. Journal of Alloys and Compounds, 2009, 473(1-2): 48-52.

    [112]Jiang, Zhiyi; Zhang, Lei; Cai, Lili, Xia, Changrong. Bismuth oxide-coated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells with yttria-stabilized zirconia electrolytes[J]. Electrochimica Acta, 2009, 54(11): 3059-3065.

    [113]Ding, Dong; Li, Lei; Feng, Kai; Liu, Zhangbo, Xia, Changrong. High performance Ni–Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2009, 187(2): 400-402.

    [114]Jiang, Zhiyi; Xia, Changrong; Zhao, Fei, Chen, Fanglin. La0.85Sr0.15MnO3δ infiltrated Y0.5Bi1.5O3 cathodes for intermediate-temperature solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2009, 12(6): B91.

    [115]Tian, Ruifen; Fan, Jue; Liu, Yali, Xia, Changrong. Low-temperature solid oxide fuel cells with La1xSrxMnO3 as the cathodes[J]. Journal of Power Sources, 2008, 185(2): 1247-1251.

    [116]Sun, Min; Sheng, Guo-Ping; Zhang, Lei; Xia, Chang-Rong; Mu, Zhe-Xuan; Liu, Xian-Wei; Wang, Hua-Lin; Yu, Han-Qing; Qi, Rong, Yu, Tao. An MEC-MFC-coupled system for biohydrogen production from acetate[J]. Environmental Science & Technology, 2008, 42(21): 8095-8100.

    [117]Chen, Xilin; Wang, Chunsheng; Payzant, E Andrew; Xia, Changrong, Chu, Deryn. An oxide ion and proton co-ion conducting Sn0.9In0.1P2O7 electrolyte for intermediate-temperature fuel cells[J]. Journal of The Electrochemical Society, 2008, 155(12): B1264.

    [118]Sun, Min; Zhang, Lei; Sheng, Guo-Ping; Liu, Xian-Wei; Xia, Chang-Rong; Mu, Zhe-Xuan; Wang, Hua-Lin, Yu, Han-Qing. The external electric field manipulates anode biofilm catalytic activity in microbial fuel cells[J]. Journal of Biotechnology, 2008, (136): S410.

    [119]Zhao, Fei; Wang, Zhiyong; Liu, Mingfei; Zhang, Lei; Xia, Changrong, Chen, Fanglin. Novel nano-network cathodes for solid oxide fuel cells[J]. Journal of Power Sources, 2008, 185(1): 13-18.

    [120]Wu, Tianzhi; Peng, Ranran, Xia, Changrong. Sm0.5Sr0.5CoO3δ–BaCe0.8Sm0.2O3-δ composite cathodes for proton-conducting solid oxide fuel cells[J]. Solid State Ionics, 2008, 179(27-32): 1505-1508.

    [121]Zhao, Fei; Wang, Xiangfeng; Wang, Zhiyong; Peng, Ranran, Xia, Changrong. K2NiF4 type La2xSrxCo0.8Ni0.2O4+δ as the cathodes for solid oxide fuel cells[J]. Solid State Ionics, 2008, 179(27-32): 1450-1453.

    [122]Zhang, Lei; Zhao, Fei; Peng, Ranran, Xia, Changrong. Effect of firing temperature on the performance of LSM–SDC cathodes prepared with an ion-impregnation method[J]. Solid State Ionics, 2008, 179(27-32): 1553-1556.

    [123]Ding, Dong; Liu, Beibei; Zhu, Zina; Zhou, Shuai, Xia, Changrong. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells[J]. Solid State Ionics, 2008, 179(21-26): 896-899.

    [124]Ding, Dong; Liu, Zhangbo; Li, Lei, Xia, Changrong. An octane-fueled low temperature solid oxide fuel cell with Ru-free anodes[J]. Electrochemistry Communications, 2008, 10(9): 1295-1298.

    [125]Wang, Qigen; Peng, Ranran; Xia, Changrong; Zhu, Wei, Wang, Huanting. Characteristics of YSZ synthesized with a glycine-nitrate process[J]. Ceramics International, 2008, 34(7): 1773-1778.

    [126]Bi, Lei; Zhang, Shangquan; Fang, Shumin; Zhang, Lei; Xie, Kui; Xia, Changrong, Liu, Wei. Preparation of an extremely dense BaCe0.8Sm0.2O3δ thin membrane based on an in situ reaction[J]. Electrochemistry Communications, 2008, 10(7): 1005-1007.

    [127]Ding, Dong; Zhu, Wei; Gao, Jianfeng, Xia, Changrong. High performance electrolyte-coated anodes for low-temperature solid oxide fuel cells: Model and Experiments[J]. Journal of Power Sources, 2008, 179(1): 177-185.

    [128]Zhao, Fei; Peng, Ranran, Xia, Changrong. A La0.6Sr0.4CoO3δ-based electrode with high durability for intermediate temperature solid oxide fuel cells[J]. Materials Research Bulletin, 2008, 43(2): 370-376.

    [129]Zhao, Fei; Peng, Ranran, Xia, Changrong. LSC-based electrode with high durability for IT-SOFCs[J]. Fuel Cells Bulletin, 2008, 2008(2): 12-16.

    [130]Zhu, Wei; Ding, Dong, Xia, Changrong. Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method: a modeling comparison[J]. Electrochemical and Solid-State Letters, 2008, 11(6): B83.

    [131]Zhu, Wei; Zhao, Fei; Yao, Jianfeng; Zhang, Xinyi; Wang, Huanting; Xia, Changrong, Li, Chun‐Zhu. Humic acids as a complexible fuel for combustion synthesis of ceramic nanoparticles[J]. Journal of the American Ceramic Society, 2007, 90(12): 4012-4014.

    [132]Chen, Xilin; Xia, Changrong, Stimming, Ulrich. Water effect on the conductivity behavior of NH4PO3-based electrolytes for intermediate temperature fuel cells[J]. Electrochimica Acta, 2007, 52(28): 7835-7840.

    [133]Yin, Yanhong; Li, Shaoyu; Xia, Changrong, Meng, Guangyao. Electrochemical performance of IT-SOFCs with a double-layer anode[J]. Journal of Power Sources, 2007, 167(1): 90-93.

    [134]Li, Haibin; Xia, Changrong; Zhu, Minhui; Zhou, Zuoxing; Wei, Xiaoliang, Meng, Guangyao. Increasing the sinterability of tape cast oxalate-derived doped ceria powder by ball milling[J]. Ceramics International, 2007, 33(2): 201-205.

    [135]Li, Hai Bin; Xia, Chang Rong; Fan, Xiao Hong; He, Xi; Wei, Xiaoliang, Meng, Guang Yao. Co-sintering of SDC/NiO-SDC bi-layers prepared by tape casting[J]. Key Engineering Materials, 2004, 280: 779-784.

    [136]Peng, R; Fan, X; Jiang, Z, Xia, C. Characteristics of La0.85Sr0.15MnO3–δ Powders Synthesized by a Glycine‐Nitrate Process[J]. Fuel cells, 2006, 6(6): 455-459.

    [137]Zhu, Wei; Xia, Changrong; Ding, Dong; Shi, Xiaoya, Meng, Guangyao. Electrical properties of ceria-carbonate composite electrolytes[J]. Materials Research Bulletin, 2006, 41(11): 2057-2064.

    [138]Chen, Xilin; Huang, Zhen, Xia, Changrong. Fabrication and characterization of solid state proton conductor (NH4)2SiP4O13–NH4PO3 for fuel cells operated at 150–250° C[J]. Solid State Ionics, 2006, 177(26-32): 2413-2416.

    [139]Xu, Xingyan; Jiang, Zhiyi; Fan, Xing, Xia, Changrong. LSM–SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes[J]. Solid State Ionics, 2006, 177(19-25): 2113-2117.

    [140]Xie, Zhen; Xia, Changrong; Zhang, Mengying; Zhu, Wei, Wang, Huanting. Ni1xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel[J]. Journal of Power Sources, 2006, 161(2): 1056-1061.

    [141]Zhu, Wei; Xia, Changrong; Fan, Jue; Peng, Ranran, Meng, Guangyao. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2006, 160(2): 897-902.

    [142]Chen, Xilin; Li, Xu; Jiang, Shuai; Xia, Changrong, Stimming, Ulrich. Solid state protonic conductor NH4PO3–(NH4)2Mn(PO3)4 for intermediate temperature fuel cells[J]. Electrochimica Acta, 2006, 51(28): 6542-6547.

    [143]Zhu, Wei; Yin, Yan-hong; Gao, Cen; Xia, Chang-rong, Meng, Guang-yao. Electromotive force for solid oxide fuel cells using biomass produced gas as fuel[J]. Chinese Journal of Chemical Physics, 2006, 19(4): 325-328.

    [144]Li, Haibin; Xia, Changrong; Zhou, Zuoxing; Zhu, Minhui, Meng, Guangyao. Improving the anode microstructure for SOFC with coprecipitated composite NiO/Ce0.8Sm0.2O1.9 powder[J]. Journal of materials science, 2006, 41(10): 3185-3187.

    [145]Sun, Chunwen; Xie, Zhen; Xia, Changrong; Li, Hong, Chen, Liquan. Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells[J]. Electrochemistry Communications, 2006, 8(5): 833-838.

    [146]Xie, Zhen; Zhu, Wei; Zhu, Baichuan, Xia, Changrong. FexCo0.5xNi0.5–SDC anodes for low-temperature solid oxide fuel cells[J]. Electrochimica Acta, 2006, 51(15): 3052-3057.

    [147]Yin, Yanhong; Li, Shaoyu; Xia, Changrong, Meng, Guangyao. Electrochemical performance of gel-cast NiO–SDC composite anodes in low-temperature SOFCs[J]. Electrochimica Acta, 2006, 51(13): 2594-2598.

    [148]Li, Haibin; Xia, Changrong; Zhu, Minhui; Zhou, Zuoxing, Meng, Guangyao. Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics[J]. Acta Materialia, 2006, 54(3): 721-727.

    [149]Xu, Xingyan; Xia, Changrong; Huang, Shouguo, Peng, Dingkun. YSZ thin films deposited by spin-coating for IT-SOFCs[J]. Ceramics International, 2005, 31(8): 1061-1064.

    [150]Su, Feng; Zhang, Yanxiang; Ni, Meng, Xia, Changrong. Sm0.5Sr0.5CoO3-Ce0.8Sm0.2O1.9 electrodes enhanced by Sm0.5Sr0.5CoO3 impregnation for proton conductor based solid oxide fuel cells[J]. International journal of hydrogen energy, 2014, 39(6): 2685-2691.

    [151]Zhu, Guangyan; Fang, Xiaohong; Xia, Changrong, Liu, Xingqin. Preparation and electrical properties of La0.4Sr0.6Ni0.2Fe0.8O3 using a glycine nitrate process[J]. Ceramics International, 2005, 31(1): 115-119.

    [152]Yin, Yanhong; Li, Shaoyu; Zhu, Wei; Xia, Changrong, Meng, Guangyao. Research on Calcium Doped Ceria Used in Intermediate-Temperature SOFCs Anodes[J]. Journal of Rare Earths, 2005, 23(4): 433-436.

    [153]Xu, Xingyan; Xia, Changrong; Xiao, Guoliang, Peng, Dingkun. Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes[J]. Solid State Ionics, 2005, 176(17-18): 1513-1520.

    [154]Xu, Xing Yan; Xia, Chang Rong; Huang, Shou Guo, Meng, Guang Yao. Intermediate-temperature solid oxide fuel cells with Y0.25Bi0.75O1.5-Ag cathodes; proceedings of the Materials Science Forum, F, 2005 [C]. Trans Tech Publ.

    [155]Yin, Yan Hong; Xia, Chang Rong; Zhu, Wei; Yong, Guo, Meng, Guang Yao. Fabrication of NiO-SDC composite anodes using gel-casting for low-temperature SOFCs; proceedings of the Materials Science Forum, F, 2005 [C]. Trans Tech Publ.

    [156]Xia, Changrong, Liu, Meilin. A simple and cost‐effective approach to fabrication of dense ceramic membranes on porous substrates[J]. Journal of the American Ceramic Society, 2001, 84(8): 1903-1905.

    [157]Yin, Yanhong; Zhu, Wei; Xia, Changrong; Gao, Cen, Meng, Guangyao. Low-temperature SOFCs using biomass-produced gases as fuels[J]. Journal of applied electrochemistry, 2004, 34: 1287-1291.

    [158]Fan, Xing; Xia, Changrong; Yang, Xin, Meng, Guangyao. Microstructures and Interfacial resistance of LSM-SDC composite cathodes for IT-SOFCs[J]. Journal of Inorganic Materials, 2004, 19(5): 1038-1044.

    [159]Yin, Yanhong; Zhu, Wei; Xia, Changrong, Meng, Guangyao. Gel-cast NiO–SDC composites as anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2004, 132(1-2): 36-41.

    [160]Meng, Guangyao; Song, H; Xia, Changrong; Liu, Xinqing, Peng, Dingkun. Novel CVD techniques for Micro‐and IT‐SOFC fabrication[J]. Fuel cells, 2004, 4(1‐2): 48-55.

    [161]Fang, Xiaohong; Zhu, Guangyan; Xia, Changrong; Liu, Xingqin, Meng, Guangyao. Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation[J]. Solid State Ionics, 2004, 168(1-2): 31-36.

    [162]Peng, Ranran; Xia, Changrong; Peng, Dingkun, Meng, Guangyao. Effect of powder preparation on (CeO2)0.8(Sm2O3)0.1 thin film properties by screen-printing[J]. Materials Letters, 2004, 58(5): 604-608.

    [163]Song, Haizheng; Xia, Changrong; Jiang, Yinzhu; Meng, Guangyao, Peng, Dingkun. Deposition of Y2O3 stabilized ZrO2 thin films from Zr(DPM)4 and Y(DPM)3 by aerosol-assisted MOCVD[J]. Materials Letters, 2003, 57(24-25): 3833-3838.

    [164]Song, Haizheng; Xia, Changrong; Meng, Guangyao, Peng, Dingkun. Preparation of Gd2O3 doped CeO2 thin films by oxy-acetylene combustion assisted aerosol-chemical vapor deposition technique on various substrates and zone model for microstructure[J]. Thin Solid Films, 2003, 434(1-2): 244-249.

    [165]Song, Haizheng; Jiang, Yinzhu; Xia, Changrong; Meng, Guangyao, Peng, Dingkun. Synthesis and characterization of volatile metal β-diketonate chelates of M(DPM)n (M= Ce, Gd, Y, Zr, n= 3, 4) used as precursors for MOCVD[J]. Journal of Crystal Growth, 2003, 250(3-4): 423-430.

    [166]Zha, Shaowu; Xia, Changrong, Meng, Guangyao. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. Journal of Power Sources, 2003, 115(1): 44-48.

    [167]Xia, Changrong; Zhang, Yuelan, Liu, Meilin. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells[J]. Applied physics letters, 2003, 82(6): 901-903.

    [168]Xia, Changrong; Zhang, Yuelan, Liu, Meilin. LSM-GDC composite cathodes derived from a sol-gel process: Effect of microstructure on interfacial polarization resistance[J]. Electrochemical and Solid-State Letters, 2003, 6(12): A290.

    [169]Peng, Ranran; Xia, Changrong; Liu, Xingqin; Peng, Dingkun, Meng, Guangyao. Intermediate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing[J]. Solid State Ionics, 2002, 152: 561-565.

    [170]Peng, Ranran; Xia, Changrong; Fu, Qingxi; Meng, Guangyao, Peng, Dingkun. Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.1 powders prepared by glycine–nitrate process[J]. Materials Letters, 2002, 56(6): 1043-1047.

    [171]Burke, Alan; Winnick, Jack; Xia, Changrong, Liu, Meilin. Removal of hydrogen sulfide from a fuel gas stream by electrochemical membrane separation[J]. Journal of The Electrochemical Society, 2002, 149(11): D160.

    [172]Xia, Changrong; Rauch, William; Wellborn, William, Liu, Meilin. Functionally graded cathodes for honeycomb solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2002, 5(10): A217.

    [173]Xia, Changrong; Rauch, William; Chen, Fanglin, Liu, Meilin. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs[J]. Solid State Ionics, 2002, 149(1-2): 11-19.

    [174]Meng, GY; Fu, QX; Zha, SW; Xia, CR; Liu, XQ, Peng, DK. Novel intermediate temperature ceramic fuel cells with doped ceria-based composite electrolytes[J]. Solid State Ionics, 2002, 148(3-4): 533-537.

    [175]Meng, Guangyao; Song, HZ; Wang, Haibin; Xia, Changrong, Peng, Dingkun. Progress in ion-transport inorganic membranes by novel chemical vapor deposition (CVD) techniques[J]. Thin Solid Films, 2002, 409(1): 105-111.

    [176]Zha, Shaowu; Xia, Changrong; Fang, Xiaohong; Wang, Huaibin; Peng, Dingkun, Meng, Guangyao. Processing and electrical properties of doped-LaGaO3 by gelcasting[J]. Ceramics International, 2001, 27(6): 649-654.

    [177]Xia, Changrong, Liu, Meilin. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing[J]. Solid State Ionics, 2001, 144(3-4): 249-255.

    [178]Chen, Fanglin; Xia, Changrong, Liu, Meilin. Preparation of ordered macroporous Sr0.5Sm0.5CoO3 as cathode for solid oxide fuel cells[J]. Chemistry letters, 2001, 30(10): 1032-1033.

    [179]Changrong, Xia; Xiaohong, Fang; Guoguang, Zhang; Chusheng, Chen; Dingkun, Peng, Guangyao, Meng. Preparation and characterization of SrFeCo0.5O3.25+δ by gelcasting[J]. Materials Research Bulletin, 2001, 36(9): 1587-1594.

    [180]Changrong, Xia; Xiaoxia, Guo; Fanqing, Li; Dingkun, Peng, Guangyao, Meng. Preparation of asymmetric Ni/ceramic composite membrane by electroless plating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179(2-3): 229-235.

    [181]Zhu, Bin; Xia, Changrong; Luo, Xiaoguang, Niklasson, Gunnar. Transparent two-phase composite oxide thin films with high conductivity[J]. Thin Solid Films, 2001, 385(1-2): 209-214.

    [182]Zha, Shaowu; Fu, Qingxi; Lang, Yin; Xia, Changrong, Meng, Guangyao. Novel azeotropic distillation process for synthesizing nanoscale powders of yttria doped ceria electrolyte[J]. Materials Letters, 2001, 47(6): 351-355.

    [183]Xia, Changrong; Gao, Jianfeng; Peng, Dingkun, Meng, Guangyao. Preparation of yttria stabilized zirconia ultrafiltration membranes with inorganic precursors[J]. Journal of Inorganic Materials, 2001, 16(1): 188-192.

    [184]Zha, Shaowu; Xia, Changrong, Meng, Guangyao. Calculation of the emf of solid oxide fuel cells[J]. Journal of applied electrochemistry, 2001, 31: 93-98.

    [185]Wang, HB; Song, HZ; Xia, Changrong; Peng, Dingkun, Meng, Guangyao. Aerosol-assisted MOCVD deposition of YDC thin films on (NiO+YDC) substrates[J]. Materials Research Bulletin, 2000, 35(14-15): 2363-2370.

    [186]Zhu, Weidong; Xia, Changrong; Lin, Shuqin, Meng, Guangyao. Cross-flow microfiltration of an oily emulsion using alumina membranes[J]. Journal of Porous Media, 2000, 3(3).

    [187]Xia, Changrong; Zha, Shaowu; Yang, Weiguang; Peng, Ranran; Peng, Dingkun, Meng, Guangyao. Preparation of yttria stabilized zirconia membranes on porous substrates by a dip-coating process[J]. Solid State Ionics, 2000, 133(3-4): 287-294.

    [188]Changrong, Xia; Huaqiang, Cao; Hong, Wang; Guangyao, Meng, Dingkun, Peng. Sol–gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide[J]. Journal of membrane science, 1999, 162(1-2): 181-188.

    [189]Zhu, Bin; Luo, Ziaoguang, Xia, Changrong. Transparent conducting CeO2–SiO2 thin films[J]. Materials Research Bulletin, 1999, 34(10-11): 1507-1512.

    [190]Zhu, Bin; Xia, Changrong; Albinsson, I, Mellander, B -E. Structural and electrical properties of γ-alumina-lithium sulphate films[J]. Ionics, 1998, 4: 330-335.

    [191]Bin, Zhu; Changrong, Xia; Xiaoguang, Luo, Guangyao, Meng. Preparation and characterization of ceria-zirconia ceramics using a sol-gel process[J]. High temperature and materials science, 1997, 38(2-3).

    [192]Zhu, Bin; Luo, Xiaoguang; Xia, Changrong; Albinsson, I, Mellander, B -E. Electrical properties of ZrO 2-CeO 2 at intermediate temperatures[J]. Ionics, 1997, 3: 363-367.

    [193]Changrong, Xia; Feng, Wu; Zhaojing, Meng; Fanqing, Li; Dingkun, Peng, Guangyao, Meng. Boehmite sol properties and preparation of two-layer alumina membrane by a sol-gel process[J]. Journal of membrane science, 1996, 116(1): 9-16.