扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 吴恒安 ( 教授 )

    的个人主页 http://faculty.ustc.tsg211.com/wuhengan/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 论文成果

Publication List ( ResearcherID: http://www.researcherid.com/rid/A-3646-2009 ):

137. Fan, J.C., J. De Coninck, H.A. Wu* and F.C. Wang*, Microscopic Origin of Capillary Force Balance at Contact Line. Physical Review Letters, 2020. 124(12): p. 125502. (https://doi.org/10.1103/PhysRevLett.124.125502)

136. Wang, K.#, X.H. Sun#, Y. Zhang, Y.C. Wei, D.Y. Chen, H.A. Wu, Z.J. Song, R. Long*, J.B. Wang* and J. Chen*, Microfluidic cytometry for high-throughput characterization of single cell cytoplasmic viscosity using crossing constriction channels. Cytometry Part A, 2019. 97(6): p. 630-637. (http://dx.doi.org/10.1002/cyto.a.23921)

135. Wang, K.#, X.H. Sun#, Y. Zhang, T. Zhan, Y. Zheng, Y.C. Wei, P. Zhao, D.Y. Chen, H.A. Wu, W.H. Wang, R. Long*, J.B. Wang* and J. Chen*, Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration. Royal Society Open Science, 2019. 6: p. 181707. (http://dx.doi.org/10.1098/rsos.181707)

134. Xia, J., Y.B. Zhu*, Z.Z. He, F.C. Wang and H.A. Wu*, Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS Applied Materials & Interfaces, 2019. 11(18): p. 17068-17078. (http://dx.doi.org/10.1021/acsami.9b02971)

133. Liu, C., Y.K. Shen, J.N. Zhang, D.T. Lu, H. Liu and H.A. Wu*, Production analysis in shale gas reservoirs based on fracturing-enhanced permeability areas. Science China: Physics, Mechanics & Astronomy, 2019. 62. (https://doi.org/10.1007/s11433-019-9427-x)

132. Wu, B., F.C. Wu, Y.B. Zhu, A.M. He, P. Wang* and H.A. Wu*, Fast reaction of aluminum nanoparticles promoted by oxide shell. Journal of Applied Physics, 2019. 126(14): p. 144305. (https://doi.org/10.1063/1.5115545)

131. Hu, X.Y#., X.R. Wang#, Z.P. Ge, L. Zhang, Y.R. Zhou, J.Y., Li, L.F. Bu, H.A. Wu, P. Li*, W.P. Xu*, Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy. Analyst, 2019. 144: p. 3861-3869. (https://doi.org/10.1039/C9AN00251K)

130. Yu, L.#, C. Zhu#, X.H. Sun, J. Salter, H.A. Wu, Y. Jin, W. Zhang*, R. Long*, Rapid Fabrication of Malleable Fiber Reinforced Composites with Vitrimer Powder. ACS Applied Polymer Materials, 2019. 1(9): p. 2535-2542. (http://dx.doi.org/10.1021/acsapm.9b00641)

129. He, Z.Z., Y.B. Zhu*, J. Xia and H.A. Wu, Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019. 133: p. 103706. (https://doi.org/10.1016/j.jmps.2019.103706)

128. Zhou, N., F.C. Wu, Y.B. Zhu, X.Z. Li, Q. Wu* and H.A. Wu*, Defect production and segregation induced by collision cascades in U-10Zr alloy. Journal of Nuclear Materials, 2019. 526(2): p. 151769. (https://doi.org/10.1016/j.jnucmat.2019.151769)

127. Chen, S.M.#, H.L. Gao#, X.H. Sun#, Z.Y. Ma, T. Ma, J. Xia, Y.B. Zhu, R. Zhao, H.B. Yao, H.A. Wu* and S.H. Yu*, Superior Biomimetic Nacreous Bulk Nanocomposites by a Multiscale Soft-Rigid Dual-Network Interfacial Design Strategy. Matter, 2019. 1(2): p. 412-427. (https://doi.org/10.1016/j.matt.2019.03.012)

126. Wang, W.B.#, Y.B. Zhu#, Q.L. Wen, Y.T. Wang, J. Xia, C.C. Li, M.W. Chen, Y.W. Liu*, H.Q. Li, H.A. Wu* and T.Y. Zhai*, Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro‐oxidation. Advanced Materials, 2019. 31(28): p. 1900528. (https://doi.org/10.1002/adma.201900528)

125. Yu, Z.L.#, B. Qin#, Z.Y. Ma, J. Huang, S.C. Li, H.Y. Zhao, H. Li, Y.B. Zhu, H.A. Wu and S.H. Yu*, Superelastic Hard Carbon Nanofiber Aerogels. Advanced Materials, 2019. 31(23): p. 1900651. (https://doi.org/10.1002/adma.201900651)

124. Wu, F.C., Y.B. Zhu, X.Z. Li, P. Wang, Q. Wu* and H.A. Wu*, Peculiarities in breakup and transport process of shock-induced ejecta with surrounding gas. Journal of Applied Physics, 2019. 125: p. 185901. (https://doi.org/10.1063/1.5086542)

123. Yu, Y.Z., J.C. Fan, J. Xia, Y.B. Zhu, H.A. Wu and F.C. Wang*, Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits. Nanoscale, 2019. 11: p. 8449-8457. (https://doi.org/10.1039/C9NR00317G)

122. Chen, M.W., Y.B. Zhu*, J. Xia and H.A. Wu*, Molecular insights into the initial formation of pyrolytic carbon upon carbon fiber surface. Carbon, 2019. 148: p. 307-316. (https://doi.org/10.1016/j.carbon.2019.04.003)

121. Yu, H., Y.B. Zhu, X. Jin*, H. Liu and H.A. Wu*, Multiscale simulations of shale gas transport in micro/nano-porous shale matrix considering pore structure influence. Journal of Natural Gas Science and Engineering, 2019. 64: p. 28-40. (https://doi.org/10.1016/j.jngse.2019.01.016)

120. Zhou, L.C., X.H. Sun, M.W. Chen, Y.B. Zhu and H.A. Wu*, Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites. Composite Structures, 2019. 215: p. 278-288. (https://doi.org/10.1016/j.compstruct.2019.02.053)

119. Yu, Y.Z., J.C. Fan, A. Esfandiar, Y.B. Zhu, H.A. Wu and F.C. Wang*, Charge Asymmetry Effect in Ion Transport through Angstrom-Scale Channels. Journal of Physical Chemistry C, 2019. 123(2): p. 1462-1469. (https://doi.org/10.1021/acs.jpcc.8b09742)

118. Wang, J.N., F.C. Wu, Y.B. Zhu, A.M. He, P. Wang* and H.A. Wu*, Unsupported shock wave induced dynamic fragmentation of matrix in lead with surface grooves. Computational Materials Science, 2019. 156: p. 404-410. (https://doi.org/10.1016/j.commatsci.2018.10.018)

117. Sun, X.H., L.X. Yu, M. Rentschler, H.A. Wu* and R. Long*, Delamination of a rigid punch from an elastic substrate under normal and shear forces. Journal of the Mechanics and Physics of Solids, 2019. 122: p. 141-160. (https://doi.org/10.1016/j.jmps.2018.09.009)

C.07 王奉超,朱银波,吴恒安.纳米通道受限液体的结构和输运[J].中国科学:物理学 力学 天文学(约稿),2018,48(9):094609. pdf

116. Chen, S.M.#, H.L. Gao#, Y.B. Zhu#, H.B. Yao, L.B. Mao, Q.Y. Song, J. Xia, Z. Pan, Z. He, H.A. Wu and S.H. Yu*, Biomimetic twisted plywood structural materials. National Science Review, 2018. 5(5): p. 703-714. (https://doi.org/10.1093/nsr/nwy080)

115. Liu, C., X. Jin*, F. Shi, D.T. Lu, H. Liu and H.A. Wu*, Numerical investigation on the critical factors in successfully creating fracture network in heterogeneous shale reservoirs. Journal of Natural Gas Science and Engineering, 2018. 59: p. 427-439. (https://doi.org/10.1016/j.jngse.2018.09.019)

114. Cai, Y., H.A. Wu* and S.N. Luo*, A loading-dependent model of critical resolved shear stress. International Journal of Plasticity, 2018. 109: p. 1-17. (https://doi.org/10.1016/j.ijplas.2018.03.011)

113. Zhou, L.C., M.W. Chen, C. Liu and H.A. Wu*, A multi-scale stochastic fracture model for characterizing the tensile behavior of 2D woven composites. Composite Structures, 2018. 204: p. 536-547. (https://doi.org/10.1016/j.compstruct.2018.07.128)

112. Yu, Z.L.#, N. Yang#, L.C. Zhou, Z.Y. Ma, Y.B. Zhu, Y.Y. Lu, B. Qin, W.Y. Xing, T. Ma, S.M. Chen, H.L. Gao, H.A. Wu and S.H. Yu*, Bioinspired polymeric woods. Science Advances, 2018. 4(8): p. eaat7223. (http://dx.doi.org/10.1126/sciadv.aat7223)

111. Tong, W.L., Y.M. Hung*, H. Yu, M.K. Tan, B.T. Ng, B.T. Tan, H.A. Wu and A.K. Soh, Ultrafast water permeation in graphene nanostructures anomalously enhances two-phase heat transfer. Advanced Materials Interfaces, 2018. 5(13): p. 1800286. (https://doi.org/10.1002/admi.201800286)

110. Fan, J.C., F.C. Wang*, J. Chen, Y.B. Zhu, D.T. Lu, H. Liu and H.A. Wu*, Molecular mechanism of viscoelastic polymer enhanced oil recovery in nanopores. Royal Society Open Science, 2018. 5(6): p. 180076. (http://dx.doi.org/10.1098/rsos.180076)

109. He, Z.Z., Y.B. Zhu and H.A. Wu*, Self-folding mechanics of graphene tearing and peeling from a substrate. Frontiers of Physics, 2018. 13(3): p. 138111. (https://doi.org/10.1007/s11467-018-0755-5)

108. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, An XFEM-based numerical model to calculate conductivity of propped fracture considering proppant transport, embedment and crushing. Journal of Petroleum Science and Engineering, 2018. 167: p. 615-626. (https://doi.org/10.1016/j.petrol.2018.04.042)

107. Wang, G.F., H.L. Qin, X. Gao, Y. Cao, W. Wang, F.C. Wang, H.A. Wu, H.P. Cong* and S.H. Yu*, Graphene Thin Films by Noncovalent-Interaction-Driven Assembly of Graphene Monolayers for Flexible Supercapacitors. Chem, 2018. 4(4): p. 896-910. (https://doi.org/10.1016/j.chempr.2018.01.008)

106. Wu, B., F.C. Wu, Y.B. Zhu, P. Wang, A.M. He* and H.A. Wu*, Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks. AIP Advances, 2018. 8(4): p. 045002. (https://doi.org/10.1063/1.5021671)

105. Zhu, W.D., Y.B. Zhu, L. Wang, Q. Zhu, W.H. Zhao, C.Q. Zhu, J. Bai, J.L. Yang, L.F. Yuan*, H.A. Wu* and X.C. Zeng*, Water Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and Associated Solid–Liquid–Solid Transition. Journal of Physical Chemistry C, 2018. 122(12): p. 6704-6712. (http://dx.doi.org/10.1021/acs.jpcc.8b00195)

104. Yu, H., J.C. Fan, J. Chen, Y.B. Zhu and H.A. Wu*, Pressure-dependent transport characteristic of methane gas in slit nanopores. International Journal of Heat and Mass Transfer, 2018. 123: p. 657-667. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.003)

103. Ou, X.W.#, Y.Z. Yu#, R.Z. Wu, A. Tyagi, M.H. Zhuang, Y. Ding, I.H. Abidi, H.A. Wu, F.C Wang* and Z.T. Luo*, Shuttle Suppression by Polymer-Sealed Graphene-Coated Polypropylene Separator. ACS Applied Materials & Interfaces, 2018. 10(6): p. 5534-5542. (http://dx.doi.org/10.1021/acsami.7b17251)

102. Li, X.Z., J.C. Fan, H. Yu, Y.B. Zhu* and H.A. Wu*, Lattice Boltzmann method simulations about shale gas flow in contracting nano-channels. International Journal of Heat and Mass Transfer, 2018. 122: p. 1210-1221. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.066)

101. Wang, X.L., F. Shi, C. Liu, D.T. Lu, H. Liu and H.A. Wu*, Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures. Journal of Natural Gas Science and Engineering, 2018. 50: p. 309-324. (https://doi.org/10.1016/j.jngse.2017.12.013)

C.06 王奉超,孙长庆,吴恒安.受限水的超流特性[J].科学通报(约稿),2017,62(11):1111-1114.pdf

C.05 范竞存,余昊,陈杰,李向哲,王奉超,吴恒安.非常规油气开采中的微纳米力学问题研究进展[J].图书馆VIP学报(约稿),2017,47(02):142-154.pdf

100. Wu, F.C., Y.B. Zhu, Q. Wu, X.Z. Li, P. Wang and H.A. Wu*, Helium bubbles aggravated defects production in self-irradiated copper. Journal of Nuclear Materials, 2017. 496: p. 265-273. (https://doi.org/10.1016/j.jnucmat.2017.09.042)

99. Liu, C., F. Shi, D.T. Lu, H.A. Wu*, H. Wang and H. Liu*, Numerical simulation of simultaneous multiple fractures initiation in unconventional reservoirs through injection control of horizontal well. Journal of Petroleum Science and Engineering, 2017. 159: p. 603-613. (https://doi.org/10.1016/j.petrol.2017.09.064)

98. Hou, Y., Y.B. Zhu, X.Y. Liu, Z.H. Dai, L.Q. Liu, H.A. Wu* and Z. Zhang*, Elastic–plastic properties of graphene engineered by oxygen functional groups. Journal of Physics D: Applied Physics, 2017. 50(38): p. 385305. (http://dx.doi.org/10.1088/1361-6463/aa7fd4)

97. Zhu, Y.B.#, F.C. Wang# and H.A. Wu*, Structural and dynamic characteristics in monolayer square ice. Journal of Chemical Physics, 2017. 147(4): p. 044706. (http://dx.doi.org/10.1063/1.4995432)

96. Xia, J., Y.B. Zhu*, F.C. Wang and H.A. Wu*, Effect of grain boundaries on mechanical transverse wave propagations in graphene. Journal of Applied Physics, 2017. 121(21): p. 215105. (http://dx.doi.org/10.1063/1.4984763)

95. Ge, J.#, L.A. Shi#, Y.C. Wang#, H.Y. Zhao, H.B. Yao, Y.B. Zhu, Y. Zhang, H.W. Zhu, H.A. Wu and S.H. Yu*, Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nature Nanotechnology, 2017. 12(5): p. 434-440. (http://dx.doi.org/10.1038/nnano.2017.33)

94. Chen, M.W., H.F. Zhan*, Y.B. Zhu, H.A. Wu* and Y.T. Gu, Mechanical properties of penta-graphene nanotubes. Journal of Physical Chemistry C, 2017. 121(17): p. 9642-9647. (http://dx.doi.org/10.1021/acs.jpcc.7b02753)

93. Yu, H., J. Chen, Y.B. Zhu*, F.C. Wang and H.A. Wu*, Multiscale transport mechanism of shale gas in micro/nano-pores. International Journal of Heat and Mass Transfer, 2017. 111: p. 1172-1180. (https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.050)

92. Chen, J., H. Yu, J.C. Fan, F.C. Wang, D.T. Lu, H. Liu and H.A. Wu*, Channel-width dependent pressure-driven flow characteristics of shale gas in nanopores. AIP Advances, 2017. 7(4): p. 045217. (http://dx.doi.org/10.1063/1.4982729)

91. Cox, L.M.*, X.H. Sun, C. Wang, N. Sowan, J.P. Killgore, R. Long, H.A. Wu, C.N. Bowman and Y.F. Ding*, Light-stimulated permanent shape reconfiguration in crosslinked polymer microparticles. ACS Applied Materials & Interfaces, 2017. 9(16): p. 14422-14428. (http://dx.doi.org/10.1021/acsami.7b02759)

90. Wang, L.Y., H.A. Wu and F.C. Wang*, Water desalination using nano screw pumps with a considerable processing rate. RSC Advances, 2017. 7: p. 20360-20368. (http://dx.doi.org/10.1039/C7RA00890B)

89. Wang, Y.C., Y.B. Zhu*, F.C. Wang, X.Y. Liu and H.A. Wu*, Super-elasticity and deformation mechanism of three-dimensional pillared graphene network structures. Carbon, 2017. 118: p. 588-596. (http://dx.doi.org/10.1016/j.carbon.2017.03.092)

88. Zhu, Y.B., F.C. Wang* and H.A. Wu, Superheating of monolayer ice in graphene nanocapillaries. Journal of Chemical Physics, 2017. 146(13): p. 134703. (http://dx.doi.org/10.1063/1.4979478)

87. Liu, C., F. Shi, Y.P. Zhang, Y.G. Zhang, D.W. Deng, X.L. Wang, H. Liu and H.A. Wu*, High injection rate stimulation for improving the fracture complexity in tight-oil sandstone reservoirs. Journal of Natural Gas Science and Engineering, 2017. 42: p. 133-141. (http://dx.doi.org/10.1016/j.jngse.2017.03.007)

86. Cai, Y., H.A. Wu* and S.N. Luo*, Spall strength of liquid copper and accuracy of the acoustic method. Journal of Applied Physics, 2017. 121(10): p. 105901. (http://dx.doi.org/10.1063/1.4978251)

85. Wang, L.Y., H.A. Wu and F.C. Wang*, Design of nano screw pump for water transport and its mechanisms. Scientific Reports, 2017. 7: p. 41717. (http://dx.doi.org/10.1038/srep41717)

84. He, Z.Z., F.C. Wang, Y.B. Zhu, H.A. Wu* and H.S. Park*, Mechanical properties of copper octet-truss nanolattices. Journal of the Mechanics and Physics of Solids, 2017. 101: p. 133-149. (http://dx.doi.org/10.1016/j.jmps.2017.01.019)

83. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Engineering Fracture Mechanics, 2017. 173: p. 64-90. (http://dx.doi.org/10.1016/j.engfracmech.2017.01.025)

82. Hakonen, A.*, F.C. Wang, P.O. Andersson, H. Wingfors, T. Rindzevicius, M.S. Schmidt, V.R. Soma, S.C. Xu, Y.Q Li, A. Boisen and H.A. Wu, Hand-held femtogram detection of hazardous picric acid with hydrophobic Ag nanopillar SERS substrates and mechanism of elasto-capillarity. ACS Sensors, 2017. 2(2): p. 198-202. (http://dx.doi.org/10.1021/acssensors.6b00749)

81. Zhong, H.K., J. Xia, F.C. Wang, H.S. Chen, H.A. Wu and S.S. Lin*, Graphene-piezoelectric material heterostructure for harvesting energy from water flow. Advanced Functional Materials, 2017. 27(5): p. 1604226. (http://dx.doi.org/10.1002/adfm.201604226)

80. Chen, J., F.C. Wang*, H. Liu and H.A. Wu, Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores. Science China: Physics, Mechanics & Astronomy, 2017. 60(1): p. 014611. (http://dx.doi.org/10.1007/s11433-016-0335-5)

79. Wu, F.C., P. Wang, X.Y. Liu and H.A. Wu*, Radiation damage in gallium-stabilized δ-plutonium with helium bubbles. Journal of Nuclear Materials, 2017. 484: p. 7-15. (http://dx.doi.org/10.1016/j.jnucmat.2016.11.018)

C.04 刘晓毅,王奉超,吴恒安.石墨烯及其复合材料纳米力学研究进展[J].固体力学学报(约稿),2016,37(05):398-420.pdf

C.03 吴凤超,刘晓毅,吴恒安.δ相钚镓合金的结构稳定性与力学特性[J].科学通报(约稿),2016,61(20):2207-2215.pdf

C.02 赵天武,申永宽,陈杰,刘闯,刘合,吴恒安.页岩裂缝系统产量预测的敏感性研究[J].应用数学和力学(编委供稿),2016,37(07):718-728.pdf

78. Li, Y.Q., H.A. Wu and F.C. Wang*, Effect of a Single Nanoparticle on the Contact Line Motion. Langmuir, 2016. 32(48): p. 12676-12685. (http://dx.doi.org/10.1021/acs.langmuir.6b03595)

77. Sun, X.H., H.A. Wu* and R. Long*, Thermomechanics of a temperature sensitive covalent adaptable polymer with bond exchange reactions. Soft Matter, 2016. 12(43): p. 8847-8860. (http://dx.doi.org/10.1039/C6SM01857B)

76. Radha, B.*, A. Esfandiar, F.C. Wang*, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu and A.K. Geim*, Molecular transport through capillaries made with atomic-scale precision. Nature, 2016. 538(7624): p. 222-225. (http://dx.doi.org/10.1038/nature19363)

75. Gao, H.L.#, Y.B. Zhu#, L.B. Mao, F.C. Wang, X.S. Luo, Y.Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y.R. Zheng, L. Xu, L.J. Wang, W.H. Xu, H.A. Wu* and S.H. Yu*, Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature Communications, 2016. 7: p. 12920. (http://dx.doi.org/10.1038/ncomms12920)

74. Zhu, Y.B., F.C. Wang, J. Bai, X.C. Zeng* and H.A. Wu*, AB-stacked square-like bilayer ice in graphene nanocapillaries. Physical Chemistry Chemical Physics, 2016. 18(32): p. 22039-22046. (http://dx.doi.org/10.1039/C6CP03061K)

73. Zhu, Y.B., F.C. Wang* and H.A. Wu, Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries. Journal of Chemical Physics, 2016. 145(5): p. 054704. (http://dx.doi.org/10.1063/1.4959902)

72. Liu, X.Y., F.C. Wang*, W.Q. Wang* and H.A. Wu, Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon, 2016. 107: p. 680-688. (http://dx.doi.org/10.1016/j.carbon.2016.06.071)

71. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, A coupled extended finite element approach for modeling hydraulic fracturing in consideration of proppant. Journal of Natural Gas Science and Engineering, 2016. 33: p. 885-897. (http://dx.doi.org/10.1016/j.jngse.2016.06.031)

70. Xia, J., X.Y. Liu, W. Zhou, F.C. Wang and H.A. Wu*, Transformation between divacancy defects induced by an energy pulse in graphene. Nanotechnology, 2016. 27(27): p. 274004. (http://dx.doi.org/10.1088/0957-4484/27/27/274004)

69. Wang, X.L., F. Shi, H. Liu and H.A. Wu*, Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. Journal of Natural Gas Science and Engineering, 2016. 33: p. 56-69. (http://dx.doi.org/10.1016/j.jngse.2016.05.001)

68. Zhu, Y.B., F.C. Wang*, J. Bai, X.C. Zeng* and H.A. Wu, Formation of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure. Journal of Physical Chemistry C, 2016. 120(15): p. 8109-8115. (http://dx.doi.org/10.1021/acs.jpcc.6b00258)

67. Zhao, Y.L., J. Yao, L. Xu, M.N. Mankin, Y.B. Zhu, H.A. Wu, L.Q. Mai, Q.J. Zhang and C.M. Lieber*, Shape-controlled deterministic assembly of nanowires. Nano Letters, 2016. 16(4): p. 2644-2650. (http://dx.doi.org/10.1021/acs.nanolett.6b00292)

66. Cai, Y., J.Y. Huang, H.A. Wu*, M.H. Zhu, W.A. Goddard and S.N. Luo*, Tensile strength of liquids: equivalence of temporal and spatial scales in cavitation. Journal of Physical Chemistry Letters, 2016. 7(5): p. 806-810. (http://dx.doi.org/10.1021/acs.jpclett.5b02798)

65. Wang, X.L., C. Liu, H. Wang, H. Liu and H.A. Wu*, Comparison of consecutive and alternate hydraulic fracturing in horizontal wells using XFEM-based cohesive zone method. Journal of Petroleum Science and Engineering, 2016. 143: p. 14-25. (http://dx.doi.org/10.1016/j.petrol.2016.02.014)

64. Li, Y.Q., H.A. Wu and F.C. Wang*, Stagnation of a droplet on a conical substrate determined by the critical curvature ratio. Journal of Physics D: Applied Physics, 2016. 49(8): p. 085304. (http://dx.doi.org/10.1088/0022-3727/49/8/085304)

63. Liu, C., X.L. Wang, D.W. Deng, Y.P. Zhang, Y.G. Zhang, H.A. Wu* and H. Liu*, Optimal spacing of sequential and simultaneous fracturing in horizontal well. Journal of Natural Gas Science and Engineering, 2016. 29: p. 329-336. (http://dx.doi.org/10.1016/j.jngse.2016.01.024)

62. Zhang, S.J., S.S. Lin*, X.Q. Li, X.Y. Liu, H.A. Wu, W.L. Xu, P. Wang, Z.Q. Wu, H.K. Zhong and Z.J. Xu, Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells. Nanoscale, 2016. 8(1): p. 226-232. (http://dx.doi.org/10.1039/C5NR06345K)

61. Wu, H.A.* and X.Y. Liu, Tuning electromechanics of dynamic ripple pattern in graphene monolayer. Carbon, 2016. 98: p. 510-518. (http://dx.doi.org/10.1016/j.carbon.2015.11.010)

60. Wang, L.Y., H.A. Wu and F.C. Wang*, Efficient transport of droplet sandwiched between saw-tooth plates. Journal of Colloid and Interface Science, 2016. 462: p. 280–287. (http://dx.doi.org/10.1016/j.jcis.2015.09.071)

C.01 王奉超,吴恒安.石墨烯类二维材料的质子输运特性[J].物理(约稿),2015,44(07):453-455.pdf

59. Zhu, Y.B., F.C. Wang, J. Bai, X.C. Zeng* and H.A. Wu*, Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano, 2015. 9(12): p. 12197–12204. (http://dx.doi.org/10.1021/acsnano.5b06572)

58. Shen, Y.K., H. Liu, H. Wang and H.A. Wu*, Wellbore instability induced by alternating water injection and well washing with an elasto-plastic erosion model. Journal of Natural Gas Science and Engineering, 2015. 27: p. 1863-1870. (http://dx.doi.org/10.1016/j.jngse.2015.11.016)

57. Wang, F.C. and H.A. Wu*, Molecular origin of contact line stick-slip motion during droplet evaporation. Scientific Reports, 2015. 5: p. 17521. (http://dx.doi.org/10.1038/srep17521)

56. Liu, X.Y., F.C. Wang* and H.A. Wu, Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 2015. 17(47): p. 31911-31916. (http://dx.doi.org/10.1039/c5cp04343c)

55. Lin, S.S.*, S.J. Zhang, X.Q. Li, W.L. Xu, X.D. Pi, X.Y. Liu, F.C. Wang, H.A. Wu* and H.S. Chen, Quasi-two-dimensional SiC and SiC2: interaction of silicon and carbon at atomic thin lattice plane. Journal of Physical Chemistry C, 2015. 119(34): p. 19772-19779. (http://dx.doi.org/10.1021/acs.jpcc.5b04113)

54. Cai, Y., L. Wang, H.A. Wu*, M.H. Zhu*, C.L. Liu and S.N. Luo*, Homogeneous crystal nucleation in liquid copper under quasi-isentropic compression. Physical Review B, 2015. 92(1): p. 014108. (http://dx.doi.org/10.1103/PhysRevB.92.014108)

53. Wang, H., H. Liu*, H.A. Wu and X.X. Wang, A 3D numerical model for studying the effect of interface shear failure on hydraulic fracture height containment. Journal of Petroleum Science and Engineering, 2015. 133: p. 280-284. (http://dx.doi.org/10.1016/j.petrol.2015.06.016)

52. Wu, H.A.*, J. Chen and H. Liu, Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels. Journal of Physical Chemistry C, 2015. 119(24): p. 13652-13657. (http://dx.doi.org/10.1021/acs.jpcc.5b02436)

51. Liu, C., H. Liu, Y.P. Zhang, D.W. Deng and H.A. Wu*, Optimal spacing of staged fracturing in horizontal shale-gas well. Journal of Petroleum Science and Engineering, 2015. 132: p. 86-93. (http://dx.doi.org/10.1016/j.petrol.2015.05.011)

50. Algara-Siller, G., O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser*, H.A. Wu*, A.K. Geim and I.V. Grigorieva*, Square ice in graphene nanocapillaries. Nature, 2015. 519(7544): p. 443-445. (http://dx.doi.org/10.1038/nature14295)

49. Wei, Q.L., S.S. Tan, X.Y. Liu, M.Y. Yan, F.C. Wang, Q.D. Li, Q.Y. An, R.M. Sun, K.N. Zhao, H.A. Wu and L.Q. Mai*, Novel polygonal vanadium oxide nanoscrolls as stable cathode for lithium storage. Advanced Functional Materials, 2015. 25(12): p. 1773-1779. (http://dx.doi.org/10.1002/adfm.201404311)

48. E, J.C., L. Wang, Y. Cai, H.A. Wu* and S.N. Luo*, Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth. Journal of Chemical Physics, 2015. 142(6): p. 064704. (http://dx.doi.org/10.1063/1.4907627)

47. Shen, Y.K., H. Liu, H. Wang, J. Chen and H.A. Wu*, Initiation and propagation of wormhole in unconsolidated rock matrix induced by long-term water injection. Journal of Petroleum Science and Engineering, 2015. 127: p. 93-100. (http://dx.doi.org/10.1016/j.petrol.2015.01.032)

46. Liu, X.Y., F.C. Wang and H.A. Wu*, Anisotropic growth of buckling-driven wrinkles in graphene monolayer. Nanotechnology, 2015. 26(6): p. 065701. (Cover paper) (http://dx.doi.org/10.1088/0957-4484/26/6/065701)

45. Li, Y.Q., F.C. Wang*, H. Liu and H.A. Wu*, Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate. Microfluidics and Nanofluidics, 2015. 18(1): p. 111-120. (http://dx.doi.org/10.1007/s10404-014-1422-y)

44. Chen, J., F.S. Wang, G.C. Shi, G. Cao, Y. He, W.T. Ge, H. Liu* and H.A. Wu*, Finite element analysis for adhesive failure of progressive cavity pump with stator of even thickness. Journal of Petroleum Science and Engineering, 2015. 125: p. 146-153. (http://dx.doi.org/10.1016/j.petrol.2014.11.011)

43. Hu, S., M. Lozada-Hidalgo*, F.C. Wang, A. Mishchenko, F. Schedin, R.R. Nail, E.W. Hill, D.W. Boukhvalov, M.I. Katsnelson, R.A.W. Dryfe, I.V. Grigorieva, H.A. Wu* and A.K. Geim, Proton transport through one-atom-thick crystals. Nature, 2014. 516(7530): p. 227-230. (http://dx.doi.org/10.1038/nature14015)

42. Wang, L.Y., F.C. Wang*, F.Q. Yang and H.A. Wu*, Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations. Science China: Physics, Mechanics and Astronomy, 2014. 57 (11): p. 2152-2160. (http://dx.doi.org/10.1007/s11433-014-5586-y)

41. Zhao, Y.L.#, J.G. Feng#, X. Liu#, F.C. Wang, L.F. Wang, C.W. Shi, L. Huang, X. Feng, X.Y. Chen, L. Xu, M.Y. Yan, Q.J. Zhang, X.D. Bai, H.A. Wu* and L.Q. Mai*, Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nature Communications, 2014. 5: p. 4565. (http://dx.doi.org/10.1038/ncomms5565)

40. Liu, X.Y., F.C. Wang,  H.A. Wu* and W.Q. Wang, Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface. Applied Physics Letters, 2014. 104(23): p. 231901. (http://dx.doi.org/10.1063/1.4882085)

39.  Cai, Y., H.A. Wu* and S.N. Luo*, Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids. Journal of Chemical Physics, 2014. 140(21): p. 214317. (http://dx.doi.org/10.1063/1.4880960)

38.  Liu, H.*, H. Wang, H.A. Wu and X.X. Wang, A proppant settling model and its application to the hydraulic fracturing process. Oil Gas-European Magazine, 2014. 40(2): p. 109-112.

37.  Li, B., F.P. Zhao, H.A. Wu* and S.N. Luo*, Microstructure effects on shock-induced surface jetting. Journal of Applied Physics, 2014. 115(7): p. 073504. (http://dx.doi.org/10.1063/1.4865798)

36.  Joshi, R.K., P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim* and R.R. Nair*, Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014. 343(6172): p. 752-754. (http://dx.doi.org/10.1126/science.1245711)

35.  Yan, M.Y.#, F.C. Wang#, C.H. Han*, X.Y. Ma, X. Xu, Q.Y. An, L. Xu, C.J. Niu, Y.L. Zhao, X.C. Tian, P. Hu, H.A. Wu* and L.Q. Mai*, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. Journal of the American Chemical Society, 2013. 135(48): p. 18176-18182. (http://dx.doi.org/10.1021/ja409027s)

34.  Cai, Y., F.P. Zhao, Q. An, H.A. Wu*, W. Goddard III and S.N. Luo*, Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: implications to hotspot formation in energetic materials. Journal of Chemical Physics, 2013. 139(16): p. 164704. (http://dx.doi.org/10.1063/1.4825400)

33.  Wang, F.C.* and H.A. Wu, Molecular dynamics studies on spreading of nanofluids promoted by nanoparticle adsorption on solid surface. Theoretical & Applied Mechanics Letters, 2013. 3: p. 054006. (http://dx.doi.org/10.1063/2.1305406)

32.  Liu, X.Y., F.C. Wang* and H.A. Wu*, Anisotropic propagation and upper frequency limitation of terahertz waves in graphene. Applied Physics Letters, 2013. 103(7): p. 071904. (http://dx.doi.org/10.1063/1.4818683)

31.  Chen, J., H. Liu, F.S. Wang, G.C. Shi, G. Cao and H.A. Wu*, Numerical prediction on volumetric efficiency of progressive cavity pump with fluid-solid interaction model. Journal of Petroleum Science and Engineering, 2013. 109: p. 12-17. (http://dx.doi.org/10.1016/j.petrol.2013.08.019)

30.  Zhao, F.P., H.A. Wu and S.N. Luo*, Microstructure effects on shock response of Cu nanofoams. Journal of Applied Physics, 2013. 114(7): p. 073501. (http://dx.doi.org/10.1063/1.4818487)

29.  Liu, X.Y., F.C. Wang, H. S. Park and H.A. Wu*, Defecting controllability of bombarding graphene with different energetic atoms via reactive force field model. Journal of Applied Physics, 2013. 114(5): p. 054313. (http://dx.doi.org/10.1063/1.4817790)

28.  Wang, F.C. and H.A. Wu*, Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions. Soft Matter, 2013. 9(33): p. 7974-7980. (http://dx.doi.org/10.1039/C3SM51425K)

27. Zhou, X.Z., G.C. Shi, G. Cao, C.L. Sun, Y. He, H. Liu and H.A. Wu*, Three dimensional dynamics simulation of progressive cavity pump with stator of even thickness. Journal of Petroleum Science and Engineering, 2013. 106: p. 71-76. (http://dx.doi.org/10.1016/j.petrol.2013.04.014)

26.  Wang, F.C. and H.A. Wu*, Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter, 2013. 9(24): p. 5703-5709. (http://dx.doi.org/10.1039/C3SM50530H)

25.  Zhao, F.P., Q. An, B. Li, H.A. Wu, W.A. Goddard III, and S.N. Luo*, Shock response of a model structured nanofoam of Cu. Journal of Applied Physics, 2013. 113(6): p. 063516. (http://dx.doi.org/10.1063/1.4791758)

24.  Wang, H., H. Liu*, X. Zhou, H.A. Wu, and X. Wang, A 3D finite element model for simulating hydraulic fracturing processes with viscoelastic reservoir properties. Oil Gas-European Magazine, 2012. 38(4): p. 210-213.

23.  Wang, H.*, H. Liu, H.A. Wu, G.M. Zhang, and X.X. Wang, A 3D nonlinear fluid-solid coupling model of hydraulic fracturing for multi layered reservoirs. Petroleum Science and Technology, 2012. 30(21): p. 2273-2283. (http://dx.doi.org/10.1080/10916466.2010.516299)

22.  Shen, Y.K. and H.A. Wu*, Interlayer shear effect on multilayer graphene subjected to bending. Applied Physics Letters, 2012. 100(10): p. 101909. (http://dx.doi.org/10.1063/1.3693390)

21.  Nair, R.R., H.A. Wu, P.N. Jayaram, I.V. Grigorieva, and A.K. Geim*, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012. 335(6067): p. 442-444. (http://dx.doi.org/10.1126/science.1211694)

Note: All journal papers published after 2012 are listed above, while only twenty selected journal papers published before 2011 are listed below.

20.  Zhou, X.Z., H. Shen, and H.A. Wu*, Bio-optimum prestress in actin filaments with a polygonal cytoskeleton model. Archive of Applied Mechanics, 2011. 81(11): p. 1651-1658. (http://dx.doi.org/10.1007/s00419-011-0508-1)

19.  Zhou, X.Z., F.P. Zhao, Z.H. Sun, and H.A. Wu*, The inverse problem of red blood cells deformed by optical tweezers. International Journal of Computational Methods, 2011. 8(3): p. 483-492. (http://dx.doi.org/10.1142/s0219876211002654)

18.  Jiang, L.G., H.A. Wu*, X.Z. Zhou, and X.X. Wang, Coarse-grained molecular dynamics simulation of a red blood cell. Chinese Physics Letters, 2010. 27(2): p. 028704. (http://dx.doi.org/10.1088/0256-307X/27/2/028704)

17.  Zhang, G.M.*, H. Liu, J. Zhang, H.A. Wu, and X.X. Wang, Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture. Journal of Petroleum Science and Engineering, 2010. 72(3-4): p. 310-317. (http://dx.doi.org/10.1016/j.petrol.2010.03.032)

16.  Qi, Z.N., F.P. Zhao, X.Z. Zhou, Z.H. Sun, H.S. Park, and H.A. Wu*, A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons. Nanotechnology, 2010. 21(26): p. 265702. (http://dx.doi.org/10.1088/0957-4484/21/26/265702)

15.  Cheng, Q., H.A. Wu*, Y. Wang, and X.X. Wang, Atomistic simulations of shock waves in cubic silicon carbide. Computational Materials Science, 2009. 45(2): p. 419-422. (http://dx.doi.org/10.1016/j.commatsci.2008.10.020)

14.  Cheng, Q., H.A. Wu*, Y. Wang, and X.X. Wang, Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations. Applied Physics Letters, 2009. 95(2): p. 021911. (http://dx.doi.org/10.1063/1.3183584)

13.  Sun, Z.H., X.X. Wang*, and H.A. Wu, Surface relaxation effect on the distributions of energy and bulk stresses in the vicinity of Cu surface: An embedded-atom method study. Journal of Applied Physics, 2008. 104(3): p. 033501. (http://dx.doi.org/10.1063/1.2958330)

12.  Wu, H.A.* and X.X. Wang, An atomistic-continuum inhomogeneous material model for the elastic bending of metal nanocantilevers. Advances in Engineering Software, 2008. 39(9): p. 764-769. (http://dx.doi.org/10.1016/j.advengsoft.2007.10.005)

11.  Sun, Z.H., X.X. Wang*, A.K. Soh, H.A. Wu, and Y. Wang, Bending of nanoscale structures: Inconsistency between atomistic simulation and strain gradient elasticity solution. Computational Materials Science, 2007. 40(1): p. 108-113. (http://dx.doi.org/10.1016/j.commatsci.2006.11.015)

10.  Wu, H.A.*, R. Long, X.X. Wang, and F.C. Wang, Elastic interaction between a string of cells and an individual cell. Chinese Physics Letters, 2007. 24(5): p. 1407-1409. (http://dx.doi.org/10.1088/0256-307X/24/5/078)

9.    Wu, H.A.*, Z.H. Sun, Q. Cheng, and X.X. Wang, Molecular mechanics modelling and simulation of the adsorption-induced surface stress in micro-nano-cantilever sensors. Journal of Physics Conference Series, 2007. 61: p. 1266-1270. (http://dx.doi.org/10.1088/1742-6596/61/1/250)

8.    Wu, H.A.*, G.R. Liu, X. Han, and X.X. Wang, An atomistic simulation method combining molecular dynamics with finite element technique. Chaos Solitons & Fractals, 2006. 30(4): p. 791-796. (http://dx.doi.org/10.1016/j.chaos.2005.08.161)

7.    Sun, Z.H., X.X. Wang*, A.K. Soh, and H.A. Wu, On stress calculations in atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 2006. 14(3): p. 423-431. (http://dx.doi.org/10.1088/0965-0393/14/3/006)

6.    Wu, H.A.*, Molecular dynamics study of the mechanics of metal nanowires at finite temperature. European Journal of Mechanics A-Solids, 2006. 25(2): p. 370-377. (http://dx.doi.org/10.1016/j.euromechsol.2005.11.008)

5.    Wu, H.A.*, Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications, 2006. 33(1): p. 9-16. (http://dx.doi.org/10.1016/j.mechrescom.2005.05.012)

4.    Wang, Y., X.X. Wang*, X.G. Ni, and H.A. Wu, Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes. Computational Materials Science, 2005. 32(2): p. 141-146. (http://dx.doi.org/10.1016/j.commatsci.2004.08.005)

3.    Wu, H.A.*, Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Computational Materials Science, 2004. 31(3-4): p. 287-291. (http://dx.doi.org/10.1016/j.commatsci.2004.03.017)

2.    Wu, H.A.*, G.R. Liu, and J.S. Wang, Atomistic and continuum simulation on extension behaviour of single crystal with nano-holes. Modelling and Simulation in Materials Science and Engineering, 2004. 12(2): p. 225-233. (http://dx.doi.org/10.1088/0965-0393/12/2/004)

1.    Wang, Y.*, X.G. Ni, X.X. Wang, and H.A. Wu, Effect of temperature on deformation of carbon nanotube under compression. Chinese Physics, 2003. 12(9): p. 1007-1010. (http://dx.doi.org/10.1088/1009-1963/12/9/315)


版权所有 ©2020 图书馆VIP
地址:安徽省合肥市金寨路 96 号,邮政编码:230026