• 其他栏目

    高彭

    • 特任研究员 博士生导师
    • 电子邮箱:
    • 学历:研究生
    • 学位:博士
    • 毕业院校:图书馆VIP
    • 学科:地质学

    访问量:

    开通时间:..

    最后更新时间:..

    科学研究

    当前位置: 高彭研究员 >> 科学研究

    第一作者/通讯作者(*为通讯作者):

    30. Wang, Y., Gao, P.*, Zhao, Z.F., Gu, H.O., Sun, G.C., Huang, H.C., Wu, Z.J., Yin, C., 2025. Whole-rock Mg isotopes distinguishing high- and low-temperature S-type granites. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2025.05.048

    29. Gao, P.*, Garcia-Arias, M., Collins, W.J., Chen, L.*, Xiang, H., Gu, H.O., Zhao, Z.F., 2025. Polybaric differentiation for arc magma genesis: a perspective from alumina saturation index. Lithos 512-513, 108136, https://doi.org/10.1016/j.lithos.2025.108136

    28. Xia, Y.S., Sun, G.C., Gao, P.*, Zhao, Z.F., Zhou, Y., Li, Z.X., Wen, G., Qin, L., 2025. The dual origin of granites from fluid-absent and fluid-fluxed melting of the juvenile lower crust: New constraints from Mo isotopes and phase equilibrium modeling. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2025.05.013

    27. Chen, L.*, Gao, P.*, Somerville, S., Li, S.Z., Deng, J.H., Li, D.Y., Yu, S.Y., Li, X.H., Cao, H.H., Zhao, Z.F., Yin, Z.F., 2025. Apatite Geochemical Perspectives on the Maturation of Continental Arc Crust via Mush‐Facilitated Processes During Magmatic Flare‐Up. Geochemistry, Geophysics, Geosystems 26, e2024GC011700, https://doi.org/10.1029/2024gc011700

    26. Xia, Y.S., Gao, P.*, Sun, G.-C.*, Zhao, Z.-F.*, Qin, L., Wen, G., Li, Z.-X., Dai, L.-Q., 2025. Fluid-fluxed melting of juvenile lower crust traced by molybdenum isotopes. Geology 53, 125-129, https://doi.org/10.1130/g52493.1

    25. Huang, H.C., Gao, P.*, Sun, G.-C.*, Yin, C., Zhang, J., Qian, J., 2024. Mixed sources and complicated petrogenetic processes of the Himalayan granites recorded by apatite in-situ geochemistry of the Eocene Yardoi-Lhunze complex, southeast Tibet. Lithos 482-483, 107726, https://doi.org/10.1016/j.lithos.2024.107726

    24. Qin, L., Sun, G.-C.*, Gao, P.*, Zhao, Z.-F.*, Dai, L.Q., Wen, G., Xia, Y.S., Zhou, Y., 2024. Sodic adakitic granites in the East Kunlun Orogen, China: Partial melting of ultrahigh-pressure metamorphic terranes during continental collision. Chemical Geology 663, 122267, https://doi.org/10.1016/j.chemgeo.2024.122267

    23. 王艳,高彭*,尹常青,张健,钱加慧,2024. 藏南亚东地区中新世岩浆活动及构造意义. 岩石学报 40,2353-2373, https://doi.org/10.18654/1000-0569/2024.08.05

    22. Gao, P.*, Garcia-Arias, M., Wang, Y., Huang, H., Yin, C., Zhang, J., Qian, J., 2024. Revisiting the fluid regime during anatexis of metasedimentary rocks: New constraints from an integrated approach on Cenozoic Himalayan granites. Chemical Geology 661, 122184, https://doi.org/10.1016/j.chemgeo.2024.122184

    21. Wang, Y., Gao, P.*, Sun, G.-C., Mayne, M.J., Zhang, J., Yin, C., Qian, J., 2024. Zircon Hf isotope behavior during the magmatic-hydrothermal processes: A case study from the Yashan pluton, South China. Lithos 470-471, 107519, https://doi.org/10.1016/j.lithos.2024.107519

    20. 高彭*,黄惠婵,尹常青,张健,钱加慧,2023. 喜马拉雅淡色花岗岩比以前认为的更热. 科学通报 https://doi.org/10.1360/TB-2023-0827

    19. 高彭*,王艳,尹常青,张健,钱加慧,2023. 喜马拉雅造山带始新世和中新世的地壳深熔条件:来自花岗岩的地球化学证据. 矿物岩石地球化学通报 42,1, https://doi.org/10.19658/j.issn.1007-2802.2023.42.09810

    18. Gao, P.*, Wang, Y., Sun, G.-C., Mayne, M.J., Zhang, J., Yin, C., Qian, J., 2023. The contributions of (meta-)sedimentary or granitic orthogneissic sources to the Cenozoic Himalayan granites. Contributions to Mineralogy and Petrology 178, 46, https://doi.org/10.1007/s00410-023-02027-7

    17. Sun, G.-C., Gao, P.*, Zhao, Z.-F.*, 2022. Post-collisional reworking of subducted continental crust: Insights from late Paleozoic granites in the North Qaidam orogen, northeastern Tibet. Lithos 432-433, 106921, https://doi.org/10.1016/j.lithos.2022.106921

    16. Gao, P.*, Garcia-Arias, M., Gu, H.-O., Sun, G.-C., Qian, J., Wang, Y., Yin, C., Zhang, J., 2022. Magnesium isotopes and zircon geochemistry verify the entrainment of garnet increasing the maficity of S-type granites. Geochimica et Cosmochimica Acta 337, 1-13, https://doi.org/10.1016/j.gca.2022.09.029

    15. Gao, P.*, Wang, Y., Yakymchuk, C., Gu, H.-O.*, Sun, G.-C.*, Yin, C., Zhang, J., Qian, J., 2022. Homogenization of zircon Hf isotopes during late-stage granite crystallization. Chemical Geology 609, 121072, https://doi.org/10.1016/j.chemgeo.2022.121072

    14. Gao, P.*, Yakymchuk, C., Zhang, J., Yin, C., Qian, J., Li, Y.*, 2022.  Preferential dissolution of uranium-rich zircon can bias the hafnium isotope compositions of granites. Geology 50, 336-340, https://doi.org/10.1130/G49656.1

    13. Gao, P.*, Zheng, Y.F., Yakymchuk, C., Zhao, Z.F., Meng, Z.Y., 2021. The effects of source mixing and fractional crystallization on the composition of Eocene granites in the Himalayan orogen. Journal of Petrology 62, 1-23, https://doi.org/10.1093/petrology/egab037

    12. Gao, P.*, Zheng, Y.F., Zhao, Z.F., Sun, G.C., 2021. Source diversity in controlling the compositional diversity of the Cenozoic granites in the Tethyan Himalaya. Lithos 388-389, 106072, https://doi.org/10.1016/j.lithos.2021.106072

    11. Gao, P.*, Zheng, Y.F., Mayne, M.J., Zhao, Z.F., 2021. Miocene high-temperature leucogranite magmatism in the Himalayan orogen. Geological Society of America Bulletin 133, 679-690, https://doi.org/10.1130/B35691.1

    10. Sun, G.C., Gao, P.*, Zhao, Z.F.*, Zheng, Y.F., 2020. Syn-exhumation melting of the subducted continental crust: Geochemical evidence from early Paleozoic granitoids in North Qaidam, northern Tibet. Lithos 374-375, 105707, https://doi.org/10.1016/j.lithos.2020.105707

    9. Gao, P.*, Lu, Y.H., Zhao, Z.F., Zheng, Y.F., 2020. The compositional variation of I-type granites: Constraints from geochemical analyses and phase equilibrium calculations for granites from the Qinling orogen, central China. Journal of Asian Earth Sciences 200, 104471, https://doi.org/10.1016/j.jseaes.2020.104471

    8. Gao, P.*, Garcia-Arias, M., Chen, Y.X., Zhao, Z.F., 2020. Origin of peraluminous A-type granites from appropriate sources at moderate to low pressures and high temperatures. Lithos, https://doi.org/10.1016/j.lithos.2019.105287

    7. Lu, Y.H., Gao, P.*, Zhao, Z.F.*, Zheng, Y.F., 2020. Whole-rock geochemical and zircon Hf–O isotopic constraints on the origin of granitoids and their mafic enclaves from the Triassic Mishuling pluton in West Qinling, central China. Journal of Asian Earth Sciences 189, 104136, https://doi.org/10.1016/j.jseaes.2019.104136

    6. Gao, P.*, Zheng, Y.F., Chen, Y.X., et al., 2018. Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China. Lithos 352-353, 105287, https://doi.org/10.1016/j.lithos.2017.11.036

    5. Gao, P.*, Zheng, Y.F., Zhao, Z.F., 2017. Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance. Earth-Science Reviews 173, 266-294, https://doi.org/10.1016/j.earscirev.2017.07.016

    4. Gao, P.*, Zheng, Y.F., Zhao, Z.F., 2016. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos 266-267, 133-157, http://dx.doi.org/10.1016/j.lithos.2016.10.005 (ESI highly cited)

    3. Gao, P.*, Zhao, Z.F., Zheng, Y.F., 2016. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China. Journal of Asian Earth Sciences 123, 142-161, http://dx.doi.org/10.1016/j.jseaes.2016.04.003

    2. Gao, P.*, Zheng, Y.F., Zhao, Z.F., 2016. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos 258-259, 77-91, http://dx.doi.org/10.1016/j.lithos.2016.04.019

    1. Gao, P., Zhao, Z.F., Zheng, Y.F.*, 2014. Petrogenesis of Triassic granites from the Nanling Range in South China: Implications for geochemical diversity in granites. Lithos 210-211, 40-56, http://dx.doi.org/10.1016/j.lithos.2014.09.027



    其他作者(*为通讯作者):

    37. Zhang, N.Q., Zhou, K., Chen, Y.X.*, Huang, F., Gu, X., Dong, L.H., Deng, G., Gao, P., 2025. Barium isotope variation during granitic magma differentiation: implications for the discrimination of crystal fractionation and fluid-magma interaction. Geochimica et Cosmochimica Acta https://doi.org/10.1016/j.gca.2025.05.030

    36. Sun, G.C.*, Zhou, K., Li, Y.G., Xiong, J., Chen, Y.X., Dai, L.Q., Zhao, Z.F., Gao, P., Chen, R.X., Huo, J.J., Gu, H.O., 2025. Improvement of LA-MC-ICP-MS Boron Isotope Analysis of Tourmaline using a New Data Reduction Scheme: Insights into Fluid Action in Subduction Zones, https://doi.org/10.46770/AS.2024.260

    35. Chen, Y., Zhang, J.*, Gao, P., Yin, C., Qian, J., Liu, J., Zhang, S., Wang, X., Cheng, C., 2025. Decoding the primary magma composition and petrogenesis of the Neoarchean TTG rocks in the eastern North China Craton. Lithos 508-509, 108063, https://doi.org/10.1016/j.lithos.2025.108063

    34. Zhu, E.L., Xia, Q.X.*, Zhang, S.B., Van Orman, J., Chen, R.X., Li, Z.Y., Gao, P., 2024. Zirconium isotope tracing of the magmatic-hydrothermal transition. Geochimica et Cosmochimica Acta 380, 194-207, https://doi.org/10.1016/j.gca.2024.07.023

    33. Zhang, Y., Yin, C.*, Ding, L., Li, S., Qian, J., Gao, P., Li, W., 2024. Single-Stage Synchronous India-Asia Collision Model Revealed by Himalayan High-Pressure Metamorphic Rocks. Tectonics 43, e2024TC008253, https://doi.org/10.1029/2024TC008253

    32. Guo, M., Zhang, J.*, Qian, J., Yin, C., Gao, P., Chen, G., Cheng, C., Hsia, J., Zhang, S., 2024. P−T evolution of metapelitic and metamafic rocks from Northern Liaoning: Implications on the Neoarchean tectonic regime of the North China Craton. GSA Bulletin 137, 279-296. https://doi.org/10.1130/B37531.1

    31. Li, W., Yin, C.*, Yakymchuk, C., Ding, L., Li, S., Qian, J., Gao, P., Zhang, Y., 2024. High-pressure, low-temperature metamorphism preserved in the Indus-Yarlung suture zone of the eastern Himalaya: Overprinting at amphibolite facies and comparison with occurrences in the western Himalaya. GSA Bulletin 136, 4451-4475, https://doi.org/10.1130/B37456.1

    30. 卢成森,钱加慧*,尹常青,张健,高彭,吴尚京,2024. 华北克拉通中部造山带吕梁群的形成时代与构造环境. 成都理工大学学报 https://link.cnki.net/urlid/51.1634.N.20240510.2024.002

    29. Liang, Y., Qian, J.*, Yin, C., Zhang, J., Gao, P., Lu, C., Jin, X., 2024. Early Paleozoic metamorphic P–T–t evolution of the northern Cathaysia Block (SE China): Implications for thermal history and geodynamic setting. Lithos 480-481, 107659, https://doi.org/10.1016/j.lithos.2024.107659

    28. García-Arias, M.*, Morales Camera, M.M., Dahlquist, J.A., Gao, P., Couzinie, S., Diez-Montes, A., 2024. The tectonic significance of peri-Gondwanan Late Neoproterozoic-Early Palaeozoic felsic peraluminous magmatism. Earth-Science Reviews 254, 104803, https://doi.org/10.1016/j.earscirev.2024.104803

    27. 郑永飞*,陈仁旭,高彭2024. 大陆碰撞带深熔变质与花岗岩成因. 地球科学 49,1-28,https://doi.org/10.3799/dqkx.2023.215

    26. Guo, M., Zhang, J.*, Qian, J., Yin, C., Gao, P., Hsia, J., Zhang, S., Yu, C., 2024. Ultrahigh-temperature metamorphism of the felsic granulites in the eastern North China Craton and their implications on the Neoarchean tectonic regime. Lithos 468-469, 107516, https://doi.org/10.1016/j.lithos.2024.107516

    25. Hsia, J., Zhang, J.*, Qian, J., Liu, J., Tian, Y., Xian, W.W., Yin, C., Gao, P., Forster, M., Guo, M., 2024. Metamorphic P-T-t constraint on the Bantimala garnet-epidote-glaucophane schist and its implication on Mesozoic evolution of Western Sulawesi, Indonesia. Tectonophysics 873, 230228, https://doi.org/10.1016/j.tecto.2024.230228

    24. 钱加慧*,梁勇智,尹常青,高彭,张健,Reziya Maimaiti,2023. 粤西高州泥质麻粒岩变质P-T-t演化及其对华南早古生代构造背景的指示. 科学通报https://doi.org/10.1360/TB-2023-0835

    23. Yu, X., Zhang, J.*, Liu, J., Yin, C., Chen, Y., Guo, M., Qian, J., Gao, P., Cheng, C., 2023. A Long-Lived Accretionary Process during the Amalgamation of the North China Craton: Insights from Neoarchean–Paleoproterozoic Polyphase Magmatism in the Lüliang Complex. Lithosphere, https://doi.org/10.2113/2023/lithosphere_2023_229

    22. Lu, C., Qian, J.*, Yin, C., Zhang, J., Gao, P., Guo, M., 2023. Characterising early Precambrian collisional orogens: A metamorphic perspective from the Lüliang Complex and the Trans-North China Orogen. Earth-Science Reviews 245, 104566, https://doi.org/10.1016/j.earscirev.2023.104566

    21. Yin, C.*, Zhao, G., Xiao, W., Lin, S., Gao, R., Zhang, J., Qian, J., Gao, P., Qiao, H., Li, W., 2023. Paleoproterozoic accretion and assembly of the Western Block of North China: A new model. Earth-Science Reviews 241, 104448, https://doi.org/10.1016/j.earscirev.2023.104448

    20. Chen, L.*, Yakymchuk, C., Zhao, K., Zhao, Z.-F., Li, D.-Y., Gao, P., Chen, Y.-X., Sun, G.- C., 2023. The garnet effect on hafnium isotope compositions of granitoids during crustal anatexis. Geology 51, 439-443, https://doi.org/10.1130/G50914.1

    19. Lu, C., Qian, J.*, Yin, C., Gao, P., Guo, M., Zhang, W., 2022. Ultrahigh temperature metamorphism recorded in the Lüliang Complex, Trans-North China Orogen: P–T–t evolution and heating mechanism. Precambrian Research 383, 106900, https://doi.org/10.1016/j.precamres.2022.106900

    18. Hsia, J.-y., Zhang, J.*, Zhao, G., Qian, J., Liu, J., Sun, M., Yin, C., Gao, P., Xian, W.W., Guo, M., 2022. Newly discovered youngest UHT metamorphism on Earth, Western Sulawesi, Indonesia. Geoscience Frontiers 14, 101500, https://doi.org/10.1016/j.gsf.2022.101500

    17. Chen, Y., Zhang, J.*, Gao, P., Liu, J., Yin, C., Qian, J., Liu, X., Wang, X., 2022. Modern-style plate tectonics manifested by the late Neoarchean TTG-sanukitoid suite from the Datong-Huai'an Complex, Trans-North China Orogen. Lithos 430-431, 106843, https://doi.org/10.1016/j.lithos.2022.106843

    16. Cheng, C., Liu, J., Zhang, J.*, Chen, Y., Yin, C., Liu, X., Qian, J., Gao, P., Wang, X., 2022. Petrogenesis of newly identified Neoarchean granitoids in Qingyuan, North China Craton: implications on crustal growth and reworking. Journal of Asian Earth Sciences 236, 105333, https://doi.org/10.1016/j.jseaes.2022.105333

    15. Ma, H.-Z., Chen, Y.-X.*, Zhou, K., Gao, P., Zheng, Y.-F., Zha, X.-P., Zhao, Z.-F., Huang, F., 2022. The effect of crystal fractionation on the geochemical composition of syn-exhumation magmas: Implication for the formation of high δ56Fe granites in collisional orogens. Geochimica et Cosmochimica Acta 332, 156-185, https://doi.org/10.1016/j.gca.2022.06.031

    14. Zhang, Y., Yin, C.*, Davis, D., Li, S., Qian, J., Zhang, J., Gao, P., Wu, S., Li, W., Xia, Y., 2022. Mechanism of crustal thickening and exhumation of southern Lhasa terrane during the Late Cretaceous: Evidence from high-pressure metamorphic rocks of the Eastern Himalayan Syntaxis. Geological Society of America Bulletin, https://doi.org/10.1130/B36366.1

    13. Wang, X., Zhang, J.*, Yin, C., Qian, J., Gao, P., Zhang, S., Liu, X., Chen, Y., Zhao, C., 2022. A syn- to post-collisional tectonic transition in the Khondalite Belt, North China Craton: Constraints from 1.95 - 1.93 Ga adakitic granitoids in the Daqingshan Complex. Precambrian Research 374, 106648, https://doi.org/10.1016/j.precamres.2022.106648

    12. Yu, C., Yang, T., Zhang, J.*, Zhao, G., Cawood, P., Yin, C., Qian, J., Gao, P., Zhao, C., 2022. Coexisting diverse P–T–t paths during Neoarchean Sagduction: Insights from numerical modeling and applications to the eastern North China Craton. Earth and Planetary Science Letters 586, 117529, https://doi.org/10.1016/j.epsl.2022.117529

    11. Li, X., Yin, C.*, Gao, P., Davis, D., Li, S., Zhang, J., Qian, J., Zhang, Y., 2022. Petrogenesis and tectonic implications of Eocene-Oligocene potassic felsic porphyries in the Sanjiang Region, southeastern Tibetan Plateau. Journal of Asian Earth Sciences 232, 105209, https://doi.org/10.1016/j.jseaes.2022.105209

    10. Cheng, C., Zhang, J.*, Liu, J., Zhao, C., Yin, C., Qian, J., Gao, P., Liu, X., Chen, Y., 2022. Geochemistry and petrogenesis of ca. 2.1 Ga meta-mafic rocks in the central Jiao–Liao–Ji Belt, North China Craton: A consequence of intracontinental rifting or subduction? Precambrian Research 370, 106553, https://doi.org/10.1016/j.precamres.2021.106553

    9. Li, W., Yin, C.*, Lin, S., Li, W., Gao, P., Zhang, J., Qian, J., Qiao, H., 2022. Paleoproterozoic tectonic evolution from subduction to collision of the Khondalite Belt in North China: Evidence from multiple magmatism in the Qianlishan Complex. Precambrian Research 368, 106471, https://doi.org/10.1016/j.precamres.2021.106471

    8. Li, Z.X., Zhang, S.B.*, Zheng, Y.F., Hanchar, J.M., Gao, P., Lu, Y.M., Su, K., Sun, F.Y., Liang, T., 2021. Crustal thickening and continental formation in the Neoarchean: Geochemical records by granitoids from the Taihua Complex in the North China Craton. Precambrian Research 367, 106446, https://doi.org/10.1016/j.precamres.2021.106446

    7. Zheng, Y.F.*, Gao, P., 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos 402-403, 106232, https://doi.org/10.1016/j.lithos.2021.106232 (ESI highly cited)

    6. Ji, M., Gao, X.Y.*, Zheng, Y.F., Meng, Z.Y., Gao, P., 2021. Metapelites record two episodes of decompressional metamorphism in the Himalayan orogen. Lithos 394-395, 106183, https://doi.org/10.1016/j.lithos.2021.106183

    5. Li, Y., Yin, C.*, Lin, S., Zhang, J., Gao, P., Qian, J., Xia, Y., Liu, J., 2021. Geochronology and geochemistry of bimodal volcanic rocks from the western Jiangnan Orogenic Belt: Petrogenesis, source nature and tectonic implications. Precambrian Research 359, 106218, https://doi.org/10.1016/j.precamres.2021.106218

    4. Xia, Q.X.*, Gao, P., Yang, G., et al., 2019. The Origin of Garnets in Anatectic Rocks from the Eastern Himalayan Syntaxis, Southeastern Tibet: Constraints from Major and Trace Element Zoning and Phase Equilibrium Relationships. Journal of Petrology 60, 2241-2280, https://doi.org/10.1093/petrology/egaa009

    3. Rong, W., Zhang, S.B.*, Zheng, Y.F., Gao, P., 2018. Mixing of Felsic Magmas in Granite Petrogenesis: Geochemical Records of Zircon and Garnet in Peraluminous Granitoids From South China. Journal of Geophysical Research: Solid Earth 123, 2738-2769, https://doi.org/10.1002/2017JB014022

    2. Chen, Y.X.*, Gao, P., Zheng, Y.F., 2015. The anatectic effect on the zircon Hf isotope composition of migmatites and associated granites. Lithos 238, 174-184, http://dx.doi.org/10.1016/j.lithos.2015.09.026

    1. Zhao, Z.F.*, Gao, P., Zheng, Y.F., 2015. The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chemical Geology 395, 11-26, http://dx.doi.org/10.1016/j.chemgeo.2014.11.028