• 其他栏目

    宋晓元

    • 教授 博士生导师 硕士生导师
    • 教师英文名称:Xiaoyuan Song
    • 电子邮箱:
    • 学历:博士研究生毕业
    • 办公地点:图书馆VIP西校区科技东楼915
    • 学位:博士
    • 毕业院校:美国罗彻斯特大学
    • 学科:生物学
    • 2022-10-01曾获荣誉当选:“典赞 2022科普安徽”科普活动“年度科普作品”
    • 2021-05-01曾获荣誉当选:安徽省优秀科普作品一等奖
    • 2019-09-16曾获荣誉当选:王宽诚育才奖

    访问量:

    开通时间:..

    最后更新时间:..

    Reorganized 3D genome structures support transcriptional regulation in mouse spermatogenesis.

    点击次数:

    DOI码:10.1016/j.isci.2020.101034

    关键字:Genomics; Male Reproductive Endocrinology; Transcriptomics.

    摘要:Three-dimensional chromatin structures undergo dynamic reorganization during mammalian spermatogenesis; however, their impacts on gene regulation remain unclear. Here, we focused on understanding the structure-function regulation of meiotic chromosomes by Hi-C and other omics techniques in mouse spermatogenesis across five stages. Beyond confirming recent reports regarding changes in compartmentalization and reorganization of topologically associating domains (TADs), we further demonstrated that chromatin loops are present prior to and after, but not at, the pachytene stage. By integrating Hi-C and RNA-seq data, we showed that the switching of A/B compartments between spermatogenic stages is tightly associated with meiosis-specific mRNAs and piRNAs expression. Moreover, our ATAC-seq data indicated that chromatin accessibility per se is not responsible for the TAD and loop diminishment at pachytene. Additionally, our ChIP-seq data demonstrated that CTCF and cohesin remain bound at TAD boundary regions throughout meiosis, suggesting that dynamic reorganization of TADs does not require CTCF and cohesion clearance.

    卷号:23

    期号:4

    是否译文:

    发表时间:2020-04-24